Loading…
Stochastic stability of a fractional viscoelastic column under bounded noise excitation
The stability of a viscoelastic column under the excitation of stochastic axial compressive load is investigated in this paper. The material of the column is modeled using a fractional Kelvin–Voigt constitutive relation, which leads to that the equation of motion is governed by a stochastic fraction...
Saved in:
Published in: | Journal of sound and vibration 2014-03, Vol.333 (6), p.1629-1643 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stability of a viscoelastic column under the excitation of stochastic axial compressive load is investigated in this paper. The material of the column is modeled using a fractional Kelvin–Voigt constitutive relation, which leads to that the equation of motion is governed by a stochastic fractional equation with parametric excitation. The excitation is modeled as a bounded noise, which is a realistic model of stochastic fluctuation in engineering applications. The method of stochastic averaging is used to approximate the responses of the original dynamical system by a new set of averaged variables which are diffusive Markov vector. An eigenvalue problem is formulated from the averaged equations, from which the moment Lyapunov exponent is determined for the column system with small damping and weak excitation. The effects of various parameters on the stochastic stability and significant parametric resonance are discussed and confirmed by simulation results. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2013.11.019 |