Loading…

Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates

An analytical solution for free vibrations of a hybrid rectangular plate composed of a transversely isotropic, homogeneous and linear elastic core and face sheets made of a linear piezoelectric material is derived by assuming that the plate deformations are governed by the Mindlin plate theory. The...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2013-10, Vol.332 (22), p.5981-5998
Main Authors: Askari Farsangi, M.A., Saidi, A.R., Batra, R.C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An analytical solution for free vibrations of a hybrid rectangular plate composed of a transversely isotropic, homogeneous and linear elastic core and face sheets made of a linear piezoelectric material is derived by assuming that the plate deformations are governed by the Mindlin plate theory. The electric potential in a piezoelectric layer satisfies Maxwell's equation and either open circuit or closed circuit boundary conditions on its major surfaces. For the hybrid plate coupled governing equations obtained from the Hamilton principle are decoupled by introducing four auxiliary scalar functions, and the Levy type analytical solution for free vibrations is derived. Plate frequencies as a function of the piezoelectric layer thickness and the plate aspect ratio are presented and discussed. It is found that the electric boundary conditions on major surfaces of the piezoelectric layers and the aspect ratio of the hybrid plate noticeably influence its frequencies. Significant contributions of the work include proposing the four scalar functions to uncouple the governing equations, providing an analytical solution for frequencies of the hybrid plate, and delineating effects of boundary conditions as well as of aspect ratio of the plate.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2013.05.010