Loading…
Age-dependent Motor Deficits and Dopaminergic Dysfunction in DJ-1 Null Mice
Mutations in the DJ-1 gene were recently identified in an autosomal recessive form of early-onset familial Parkinson disease. Structural biology, biochemistry, and cell biology studies have suggested potential functions of DJ-1 in oxidative stress, protein folding, and degradation pathways. However,...
Saved in:
Published in: | The Journal of biological chemistry 2005-06, Vol.280 (22), p.21418-21426 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mutations in the DJ-1 gene were recently identified in an autosomal recessive form of early-onset familial Parkinson disease. Structural biology, biochemistry, and cell biology studies have suggested potential functions of DJ-1 in oxidative stress, protein folding, and degradation pathways. However, animal models are needed to determine whether and how loss of DJ-1 function leads to Parkinson disease. We have generated DJ-1 null mice with a mutation that resembles the large deletion mutation reported in patients. Our behavioral analyses indicated that DJ-1 deficiency led to age-dependent and task-dependent motoric behavioral deficits that are detectable by 5 months of age. Unbiased stereological studies did not find obvious dopamine neuron loss in 6-month- and 11-month-old mice. Neurochemical examination revealed significant changes in striatal dopaminergic function consisting of increased dopamine reuptake rates and elevated tissue dopamine content. These data represent the in vivo evidence that loss of DJ-1 function alters nigrostriatal dopaminergic function and produces motor deficits. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M413955200 |