Loading…

The DEAD box protein p68: a crucial regulator of AKT/FOXO3a signaling axis in oncogenesis

Increased abundance of proto-oncogene AKT and reduced expression of tumor suppressor Forkhead box O3 (FOXO3a), the downstream target of AKT, is frequent in carcinogenesis. Mechanistic insights of AKT gene regulation are limited. DEAD box RNA helicase p68 is overexpressed in various cancers and acts...

Full description

Saved in:
Bibliographic Details
Published in:Oncogene 2015-11, Vol.34 (47), p.5843-5856
Main Authors: Sarkar, M, Khare, V, Guturi, K K N, Das, N, Ghosh, M K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increased abundance of proto-oncogene AKT and reduced expression of tumor suppressor Forkhead box O3 (FOXO3a), the downstream target of AKT, is frequent in carcinogenesis. Mechanistic insights of AKT gene regulation are limited. DEAD box RNA helicase p68 is overexpressed in various cancers and acts as a transcriptional co-activator of several transcription factors, including β-catenin. Here, we report a novel mechanism of p68-mediated transcriptional activation of AKT, and its ensuing effect on FOXO3a, in colon carcinogenesis. Interestingly, we found that the expression of p68 and AKT exhibits strong positive correlation in normal and colon carcinoma patient samples. In addition, p68 increased both AKT messenger RNA (mRNA) and protein, enhanced AKT promoter activity in multiple colon cancer cell lines. Conversely, p68 knockdown led to reduced AKT mRNA and protein, diminished AKT promoter activity. Here, we demonstrated that p68 occupies AKT promoter with β-catenin as well as nuclear factor-κB (NF-κB)and cooperates with these in potentiating AKT transcription. Furthermore, p68 and FOXO3a expression followed inverse correlation in the same set of colon carcinoma samples. We observed that p68 significantly reduced FOXO3a protein level in an AKT-dependent manner. Studies in primary tumors and metastatic lung nodules generated in mice colorectal allograft model, using syngeneic cells stably expressing p68, corroborated our in vitro findings. Hence, a new mechanism of oncogenesis is attributed to p68 by upregulation of AKT and consequent nuclear exclusion and degradation of tumor suppressor FOXO3a.
ISSN:0950-9232
1476-5594
DOI:10.1038/onc.2015.42