Loading…
Radiolytic Reduction of Hexachlorobenzene in Surfactant Solutions: A Steady-State and Pulse Radiolysis Study
Steady-state and pulse radiolysis experiments have been performed to gain insight into the mechanism of hexachlorobenzene (HCB) degradation in nonionic surfactant (Plurafac RA-40) solutions. This understanding is important for the environmental application of radiolysis to remediate soils contaminat...
Saved in:
Published in: | Environmental science & technology 2000-08, Vol.34 (16), p.3401-3407 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Steady-state and pulse radiolysis experiments have been performed to gain insight into the mechanism of hexachlorobenzene (HCB) degradation in nonionic surfactant (Plurafac RA-40) solutions. This understanding is important for the environmental application of radiolysis to remediate soils contaminated with chlorinated aromatic compounds or to treat surfactant solution wastes from soil washing processes. Steady-state experiments showed that, after an applied dose of 50 kGy, reductive dechlorination of HCB to trichlorobenzene occurs under reducing conditions. Under oxidizing conditions at the same dose, reductive dechlorination proceeds more slowly to yield tetrachlorobenzene. Radiolytic experiments on the surfactant alone showed that the reaction rate constant between hydroxyl radicals and RA-40 (1.09 × 109 M-1 s-1) was nearly 2 orders of magnitude higher than that between hydrated electrons and RA-40 (2.0 × 107 M-1 s-1). Reaction kinetics analysis indicates efficient hydroxyl radical scavenging by surfactant molecules and the production of secondary surfactant radicals, which are reductive in nature. Thus, we observe HCB dechlorination in surfactant solutions even under strongly oxidizing conditions. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es991098o |