Loading…

Comparison of radar and video observations of shallow water breaking waves

Simultaneous microwave and video measurements of shallow water breaking waves are presented. A comparison of the data from the two sensors shows that short-duration spikes in the measured X-band radar cross section are highly correlated with the presence of breaking waves in the video imagery. In ad...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2003-04, Vol.41 (4), p.832-844
Main Authors: Haller, M.C., Lyzenga, D.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4995-cdab269f97a8cccce6b6f9258c330da9c1a84b018fd8c07a90d285ef12dd804e3
cites cdi_FETCH-LOGICAL-c4995-cdab269f97a8cccce6b6f9258c330da9c1a84b018fd8c07a90d285ef12dd804e3
container_end_page 844
container_issue 4
container_start_page 832
container_title IEEE transactions on geoscience and remote sensing
container_volume 41
creator Haller, M.C.
Lyzenga, D.R.
description Simultaneous microwave and video measurements of shallow water breaking waves are presented. A comparison of the data from the two sensors shows that short-duration spikes in the measured X-band radar cross section are highly correlated with the presence of breaking waves in the video imagery. In addition, the radar backscatter from shallow water breaking events is responsible for 40% to 50% of the total cross section, which is a much larger contribution than typically observed for deepwater breaking events. Based on estimates of the area of individual breaking regions determined from digitized video images, the radar cross section per unit area of the turbulent breaking region is shown to be well approximated by a value of -1.9 dB at 31/spl deg/ grazing. Finally, there are some differences between the radar and video signals that suggest that microwave radar may be less sensitive than video techniques to relict foam not associated with active wave breaking. In general, the results indicate that radar is a very good detector of shallow water breaking waves and suggest that radar can be used for the measurement of the spatial and temporal variations of wave breaking.
doi_str_mv 10.1109/TGRS.2003.810695
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770274649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1202969</ieee_id><sourcerecordid>2429508341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4995-cdab269f97a8cccce6b6f9258c330da9c1a84b018fd8c07a90d285ef12dd804e3</originalsourceid><addsrcrecordid>eNqN0k2LFDEQBuAgCo6rd8FLI_hx6bEqnc-jDLoqC4Ku51CdpLXXns6YzMzivzfNLCx4WM0lhHqqAsXL2FOENSLYN5fnX76uOUC3NgjKyntshVKaFpQQ99kK0KqWG8sfskelXAGgkKhX7NMmbXeUx5LmJg1NpkC5oTk0xzHE1KS-xHyk_ZjmstTLD5qmdN1c0z7mps-Rfo7z9_o8xvKYPRhoKvHJzX3Gvr1_d7n50F58Pv-4eXvRemGtbH2gnis7WE3G1xNVrwbLpfFdB4GsRzKiBzRDMB40WQjcyDggD8GAiN0Ze3Wau8vp1yGWvduOxcdpojmmQ3EWUNUdcKjy5Z2SGyM73cn_gBwFovo31AYlF8vXr--EqDVwLZSwlT7_i16lQ57rCp0xogOhlKgITsjnVEqOg9vlcUv5t0NwSwDcEgC3BMCdAlBbXtzMpeJpGjLNfiy3fcIorrWp7tnJjTHG2zIHbpXt_gAFpre6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884304664</pqid></control><display><type>article</type><title>Comparison of radar and video observations of shallow water breaking waves</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Haller, M.C. ; Lyzenga, D.R.</creator><creatorcontrib>Haller, M.C. ; Lyzenga, D.R.</creatorcontrib><description>Simultaneous microwave and video measurements of shallow water breaking waves are presented. A comparison of the data from the two sensors shows that short-duration spikes in the measured X-band radar cross section are highly correlated with the presence of breaking waves in the video imagery. In addition, the radar backscatter from shallow water breaking events is responsible for 40% to 50% of the total cross section, which is a much larger contribution than typically observed for deepwater breaking events. Based on estimates of the area of individual breaking regions determined from digitized video images, the radar cross section per unit area of the turbulent breaking region is shown to be well approximated by a value of -1.9 dB at 31/spl deg/ grazing. Finally, there are some differences between the radar and video signals that suggest that microwave radar may be less sensitive than video techniques to relict foam not associated with active wave breaking. In general, the results indicate that radar is a very good detector of shallow water breaking waves and suggest that radar can be used for the measurement of the spatial and temporal variations of wave breaking.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2003.810695</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Backscatter ; Breaking ; Digitization ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics ; Marine geology ; Microwave theory and techniques ; Microwaves ; Oceans ; Radar ; Radar cross section ; Radar cross sections ; Radar imaging ; Radar measurements ; Radar remote sensing ; Remote sensing ; Sea measurements ; Sea surface ; Shallow water ; Wave breaking</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2003-04, Vol.41 (4), p.832-844</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4995-cdab269f97a8cccce6b6f9258c330da9c1a84b018fd8c07a90d285ef12dd804e3</citedby><cites>FETCH-LOGICAL-c4995-cdab269f97a8cccce6b6f9258c330da9c1a84b018fd8c07a90d285ef12dd804e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1202969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14862778$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haller, M.C.</creatorcontrib><creatorcontrib>Lyzenga, D.R.</creatorcontrib><title>Comparison of radar and video observations of shallow water breaking waves</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Simultaneous microwave and video measurements of shallow water breaking waves are presented. A comparison of the data from the two sensors shows that short-duration spikes in the measured X-band radar cross section are highly correlated with the presence of breaking waves in the video imagery. In addition, the radar backscatter from shallow water breaking events is responsible for 40% to 50% of the total cross section, which is a much larger contribution than typically observed for deepwater breaking events. Based on estimates of the area of individual breaking regions determined from digitized video images, the radar cross section per unit area of the turbulent breaking region is shown to be well approximated by a value of -1.9 dB at 31/spl deg/ grazing. Finally, there are some differences between the radar and video signals that suggest that microwave radar may be less sensitive than video techniques to relict foam not associated with active wave breaking. In general, the results indicate that radar is a very good detector of shallow water breaking waves and suggest that radar can be used for the measurement of the spatial and temporal variations of wave breaking.</description><subject>Applied geophysics</subject><subject>Backscatter</subject><subject>Breaking</subject><subject>Digitization</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Marine geology</subject><subject>Microwave theory and techniques</subject><subject>Microwaves</subject><subject>Oceans</subject><subject>Radar</subject><subject>Radar cross section</subject><subject>Radar cross sections</subject><subject>Radar imaging</subject><subject>Radar measurements</subject><subject>Radar remote sensing</subject><subject>Remote sensing</subject><subject>Sea measurements</subject><subject>Sea surface</subject><subject>Shallow water</subject><subject>Wave breaking</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqN0k2LFDEQBuAgCo6rd8FLI_hx6bEqnc-jDLoqC4Ku51CdpLXXns6YzMzivzfNLCx4WM0lhHqqAsXL2FOENSLYN5fnX76uOUC3NgjKyntshVKaFpQQ99kK0KqWG8sfskelXAGgkKhX7NMmbXeUx5LmJg1NpkC5oTk0xzHE1KS-xHyk_ZjmstTLD5qmdN1c0z7mps-Rfo7z9_o8xvKYPRhoKvHJzX3Gvr1_d7n50F58Pv-4eXvRemGtbH2gnis7WE3G1xNVrwbLpfFdB4GsRzKiBzRDMB40WQjcyDggD8GAiN0Ze3Wau8vp1yGWvduOxcdpojmmQ3EWUNUdcKjy5Z2SGyM73cn_gBwFovo31AYlF8vXr--EqDVwLZSwlT7_i16lQ57rCp0xogOhlKgITsjnVEqOg9vlcUv5t0NwSwDcEgC3BMCdAlBbXtzMpeJpGjLNfiy3fcIorrWp7tnJjTHG2zIHbpXt_gAFpre6</recordid><startdate>200304</startdate><enddate>200304</enddate><creator>Haller, M.C.</creator><creator>Lyzenga, D.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope><scope>7QH</scope></search><sort><creationdate>200304</creationdate><title>Comparison of radar and video observations of shallow water breaking waves</title><author>Haller, M.C. ; Lyzenga, D.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4995-cdab269f97a8cccce6b6f9258c330da9c1a84b018fd8c07a90d285ef12dd804e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied geophysics</topic><topic>Backscatter</topic><topic>Breaking</topic><topic>Digitization</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Marine geology</topic><topic>Microwave theory and techniques</topic><topic>Microwaves</topic><topic>Oceans</topic><topic>Radar</topic><topic>Radar cross section</topic><topic>Radar cross sections</topic><topic>Radar imaging</topic><topic>Radar measurements</topic><topic>Radar remote sensing</topic><topic>Remote sensing</topic><topic>Sea measurements</topic><topic>Sea surface</topic><topic>Shallow water</topic><topic>Wave breaking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haller, M.C.</creatorcontrib><creatorcontrib>Lyzenga, D.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aqualine</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haller, M.C.</au><au>Lyzenga, D.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of radar and video observations of shallow water breaking waves</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2003-04</date><risdate>2003</risdate><volume>41</volume><issue>4</issue><spage>832</spage><epage>844</epage><pages>832-844</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Simultaneous microwave and video measurements of shallow water breaking waves are presented. A comparison of the data from the two sensors shows that short-duration spikes in the measured X-band radar cross section are highly correlated with the presence of breaking waves in the video imagery. In addition, the radar backscatter from shallow water breaking events is responsible for 40% to 50% of the total cross section, which is a much larger contribution than typically observed for deepwater breaking events. Based on estimates of the area of individual breaking regions determined from digitized video images, the radar cross section per unit area of the turbulent breaking region is shown to be well approximated by a value of -1.9 dB at 31/spl deg/ grazing. Finally, there are some differences between the radar and video signals that suggest that microwave radar may be less sensitive than video techniques to relict foam not associated with active wave breaking. In general, the results indicate that radar is a very good detector of shallow water breaking waves and suggest that radar can be used for the measurement of the spatial and temporal variations of wave breaking.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2003.810695</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2003-04, Vol.41 (4), p.832-844
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_miscellaneous_1770274649
source IEEE Electronic Library (IEL) Journals
subjects Applied geophysics
Backscatter
Breaking
Digitization
Earth sciences
Earth, ocean, space
Exact sciences and technology
Internal geophysics
Marine geology
Microwave theory and techniques
Microwaves
Oceans
Radar
Radar cross section
Radar cross sections
Radar imaging
Radar measurements
Radar remote sensing
Remote sensing
Sea measurements
Sea surface
Shallow water
Wave breaking
title Comparison of radar and video observations of shallow water breaking waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20radar%20and%20video%20observations%20of%20shallow%20water%20breaking%20waves&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Haller,%20M.C.&rft.date=2003-04&rft.volume=41&rft.issue=4&rft.spage=832&rft.epage=844&rft.pages=832-844&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2003.810695&rft_dat=%3Cproquest_cross%3E2429508341%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4995-cdab269f97a8cccce6b6f9258c330da9c1a84b018fd8c07a90d285ef12dd804e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884304664&rft_id=info:pmid/&rft_ieee_id=1202969&rfr_iscdi=true