Loading…
Characteristics of C-, N-DBPs formation from algal organic matter: Role of molecular weight fractions and impacts of pre-ozonation
Extracellular organic matter (EOM) and intracellular organic matter (IOM) of Microcystis aeruginosa have been reported to contribute to the formation of carbonaceous disinfection by-products (C-DBPs) and nitrogenous disinfection by-products (N-DBPs). Little is known about DBPs formation from differe...
Saved in:
Published in: | Water research (Oxford) 2015-04, Vol.72, p.381-390 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extracellular organic matter (EOM) and intracellular organic matter (IOM) of Microcystis aeruginosa have been reported to contribute to the formation of carbonaceous disinfection by-products (C-DBPs) and nitrogenous disinfection by-products (N-DBPs). Little is known about DBPs formation from different molecular weight (MW) fractions, especially for N-nitrosodimethylamine (NDMA). This study fractionated EOM and IOM into several MW fractions using a series of ultrafiltration membranes and is the first to report on the C-DBPs and N-DBPs formation from chlorination and chloramination of different MW fractions. Results showed that EOM and IOM were mainly distributed in low-MW (100 KDa) fractions. Additionally, the low-MW and high-MW fractions of EOM and IOM generally took an important part in forming C-DBPs and N-DBPs, either in chlorination or in chloramination. Furthermore, the effects of pre-ozonation on the formation of DBPs in subsequent chlorination and chloramination were also investigated. It was found that ozone shifted the high-MW fractions of EOM and IOM into lower MW fractions and increased the C-DBPs and N-DBPs yields to different degrees. As low-MW fractions are more difficult to remove than high-MW fractions by conventional treatment processes, therefore, activated carbon adsorption, nanofiltration (NF) and biological treatment processes can be ideal to remove the low-MW fractions and minimize the formation potential of C-DBPs and N-DBPs. Moreover, the use of ozone should be carefully considered in the treatment of algal-rich water.
[Display omitted]
•Algal organic matters were fractionated into six molecular weight (MW) fractions.•Low-MW and high-MW fractions contributed to most disinfection by-products (DBPs).•Pre-ozonation shifted the high-MW to low-MW fractions and increased DBPs yields. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2014.11.023 |