Loading…
Nonlinear bending analysis of radial-stiffened annular laminated sector plates with dynamic relaxation method
In this paper the nonlinear bending of laminated stiffened annular sector plates under mechanical loading with various boundary conditions is investigated. The plates are made of layers with orthotropic properties and different fiber orientations, which the aforementioned fibers are placed in a Cart...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2015-05, Vol.69 (10), p.1272-1302 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper the nonlinear bending of laminated stiffened annular sector plates under mechanical loading with various boundary conditions is investigated. The plates are made of layers with orthotropic properties and different fiber orientations, which the aforementioned fibers are placed in a Cartesian coordinate system. Based on first-order shear deformation plate theory (FSDT) and von Karman relations for large deflection, nonlinear equilibrium equations are developed. Dynamic relaxation (DR) numerical method combined with the finite difference discretization technique is used to solve the plate nonlinear partial differential equations and FORTRAN program is developed to generate the numerical results. Effects of the plate thickness-to-radius ratio, boundary condition, stiffener depth, plate lay-ups and the sector angle are discussed. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2015.03.021 |