Loading…
Exponential fitted Gauss, Radau and Lobatto methods of low order
Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear...
Saved in:
Published in: | Numerical algorithms 2008-08, Vol.48 (4), p.327-346 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems. |
---|---|
ISSN: | 1017-1398 1572-9265 |
DOI: | 10.1007/s11075-008-9202-y |