Loading…
Exponential fitted Gauss, Radau and Lobatto methods of low order
Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear...
Saved in:
Published in: | Numerical algorithms 2008-08, Vol.48 (4), p.327-346 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53 |
container_end_page | 346 |
container_issue | 4 |
container_start_page | 327 |
container_title | Numerical algorithms |
container_volume | 48 |
creator | Martín-Vaquero, J. Vigo-Aguiar, J. |
description | Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems. |
doi_str_mv | 10.1007/s11075-008-9202-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770326111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918623776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeAFw9WZ5K2aW_Ksq7CgiB6Dtkm0S7dZk1SdN_eLBUEwdPMwPf_DB8h5wjXCCBuAiKIIgOospoBy3YHZIKFYOkqi8O0A4oMeV0dk5MQ1gApxcSE3M6_tq43fWxVR20bo9F0oYYQruiz0mqgqtd06VYqRkc3Jr47HaiztHOf1Hlt_Ck5sqoL5uxnTsnr_fxl9pAtnxaPs7tl1vC8jlneqNyWeS20AdRccWEZilXToOBYMlNoUbPKama4ArDAdN4IbnRdcoumKfiUXI69W-8-BhOi3LShMV2neuOGIFEI4KxExIRe_EHXbvB9-k6yGquScSHKROFINd6F4I2VW99ulN9JBLl3KkenMjmVe6dylzJszITE9m_G_zb_H_oGGE14aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918623776</pqid></control><display><type>article</type><title>Exponential fitted Gauss, Radau and Lobatto methods of low order</title><source>Springer Nature</source><creator>Martín-Vaquero, J. ; Vigo-Aguiar, J.</creator><creatorcontrib>Martín-Vaquero, J. ; Vigo-Aguiar, J.</creatorcontrib><description>Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-008-9202-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Algorithms ; Collocation ; Collocation methods ; Computer Science ; Differential equations ; Fittings ; Mathematical models ; Numeric Computing ; Numerical Analysis ; Original Paper ; Polynomials ; Roundoff error ; Runge-Kutta method ; Stability ; Theory of Computation ; Truncation errors</subject><ispartof>Numerical algorithms, 2008-08, Vol.48 (4), p.327-346</ispartof><rights>Springer Science+Business Media, LLC. 2008</rights><rights>Springer Science+Business Media, LLC. 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53</citedby><cites>FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Martín-Vaquero, J.</creatorcontrib><creatorcontrib>Vigo-Aguiar, J.</creatorcontrib><title>Exponential fitted Gauss, Radau and Lobatto methods of low order</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Collocation</subject><subject>Collocation methods</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Fittings</subject><subject>Mathematical models</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Roundoff error</subject><subject>Runge-Kutta method</subject><subject>Stability</subject><subject>Theory of Computation</subject><subject>Truncation errors</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK4-gLeAFw9WZ5K2aW_Ksq7CgiB6Dtkm0S7dZk1SdN_eLBUEwdPMwPf_DB8h5wjXCCBuAiKIIgOospoBy3YHZIKFYOkqi8O0A4oMeV0dk5MQ1gApxcSE3M6_tq43fWxVR20bo9F0oYYQruiz0mqgqtd06VYqRkc3Jr47HaiztHOf1Hlt_Ck5sqoL5uxnTsnr_fxl9pAtnxaPs7tl1vC8jlneqNyWeS20AdRccWEZilXToOBYMlNoUbPKama4ArDAdN4IbnRdcoumKfiUXI69W-8-BhOi3LShMV2neuOGIFEI4KxExIRe_EHXbvB9-k6yGquScSHKROFINd6F4I2VW99ulN9JBLl3KkenMjmVe6dylzJszITE9m_G_zb_H_oGGE14aQ</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Martín-Vaquero, J.</creator><creator>Vigo-Aguiar, J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080801</creationdate><title>Exponential fitted Gauss, Radau and Lobatto methods of low order</title><author>Martín-Vaquero, J. ; Vigo-Aguiar, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Collocation</topic><topic>Collocation methods</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Fittings</topic><topic>Mathematical models</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Roundoff error</topic><topic>Runge-Kutta method</topic><topic>Stability</topic><topic>Theory of Computation</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Vaquero, J.</creatorcontrib><creatorcontrib>Vigo-Aguiar, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Vaquero, J.</au><au>Vigo-Aguiar, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential fitted Gauss, Radau and Lobatto methods of low order</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>48</volume><issue>4</issue><spage>327</spage><epage>346</epage><pages>327-346</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11075-008-9202-y</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-1398 |
ispartof | Numerical algorithms, 2008-08, Vol.48 (4), p.327-346 |
issn | 1017-1398 1572-9265 |
language | eng |
recordid | cdi_proquest_miscellaneous_1770326111 |
source | Springer Nature |
subjects | Algebra Algorithms Collocation Collocation methods Computer Science Differential equations Fittings Mathematical models Numeric Computing Numerical Analysis Original Paper Polynomials Roundoff error Runge-Kutta method Stability Theory of Computation Truncation errors |
title | Exponential fitted Gauss, Radau and Lobatto methods of low order |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20fitted%20Gauss,%20Radau%20and%20Lobatto%20methods%20of%20low%20order&rft.jtitle=Numerical%20algorithms&rft.au=Mart%C3%ADn-Vaquero,%20J.&rft.date=2008-08-01&rft.volume=48&rft.issue=4&rft.spage=327&rft.epage=346&rft.pages=327-346&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-008-9202-y&rft_dat=%3Cproquest_cross%3E2918623776%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918623776&rft_id=info:pmid/&rfr_iscdi=true |