Loading…

Exponential fitted Gauss, Radau and Lobatto methods of low order

Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear...

Full description

Saved in:
Bibliographic Details
Published in:Numerical algorithms 2008-08, Vol.48 (4), p.327-346
Main Authors: Martín-Vaquero, J., Vigo-Aguiar, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53
cites cdi_FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53
container_end_page 346
container_issue 4
container_start_page 327
container_title Numerical algorithms
container_volume 48
creator Martín-Vaquero, J.
Vigo-Aguiar, J.
description Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.
doi_str_mv 10.1007/s11075-008-9202-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770326111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918623776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeAFw9WZ5K2aW_Ksq7CgiB6Dtkm0S7dZk1SdN_eLBUEwdPMwPf_DB8h5wjXCCBuAiKIIgOospoBy3YHZIKFYOkqi8O0A4oMeV0dk5MQ1gApxcSE3M6_tq43fWxVR20bo9F0oYYQruiz0mqgqtd06VYqRkc3Jr47HaiztHOf1Hlt_Ck5sqoL5uxnTsnr_fxl9pAtnxaPs7tl1vC8jlneqNyWeS20AdRccWEZilXToOBYMlNoUbPKama4ArDAdN4IbnRdcoumKfiUXI69W-8-BhOi3LShMV2neuOGIFEI4KxExIRe_EHXbvB9-k6yGquScSHKROFINd6F4I2VW99ulN9JBLl3KkenMjmVe6dylzJszITE9m_G_zb_H_oGGE14aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918623776</pqid></control><display><type>article</type><title>Exponential fitted Gauss, Radau and Lobatto methods of low order</title><source>Springer Nature</source><creator>Martín-Vaquero, J. ; Vigo-Aguiar, J.</creator><creatorcontrib>Martín-Vaquero, J. ; Vigo-Aguiar, J.</creatorcontrib><description>Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.</description><identifier>ISSN: 1017-1398</identifier><identifier>EISSN: 1572-9265</identifier><identifier>DOI: 10.1007/s11075-008-9202-y</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Algorithms ; Collocation ; Collocation methods ; Computer Science ; Differential equations ; Fittings ; Mathematical models ; Numeric Computing ; Numerical Analysis ; Original Paper ; Polynomials ; Roundoff error ; Runge-Kutta method ; Stability ; Theory of Computation ; Truncation errors</subject><ispartof>Numerical algorithms, 2008-08, Vol.48 (4), p.327-346</ispartof><rights>Springer Science+Business Media, LLC. 2008</rights><rights>Springer Science+Business Media, LLC. 2008.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53</citedby><cites>FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Martín-Vaquero, J.</creatorcontrib><creatorcontrib>Vigo-Aguiar, J.</creatorcontrib><title>Exponential fitted Gauss, Radau and Lobatto methods of low order</title><title>Numerical algorithms</title><addtitle>Numer Algor</addtitle><description>Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Collocation</subject><subject>Collocation methods</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Fittings</subject><subject>Mathematical models</subject><subject>Numeric Computing</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Roundoff error</subject><subject>Runge-Kutta method</subject><subject>Stability</subject><subject>Theory of Computation</subject><subject>Truncation errors</subject><issn>1017-1398</issn><issn>1572-9265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK4-gLeAFw9WZ5K2aW_Ksq7CgiB6Dtkm0S7dZk1SdN_eLBUEwdPMwPf_DB8h5wjXCCBuAiKIIgOospoBy3YHZIKFYOkqi8O0A4oMeV0dk5MQ1gApxcSE3M6_tq43fWxVR20bo9F0oYYQruiz0mqgqtd06VYqRkc3Jr47HaiztHOf1Hlt_Ck5sqoL5uxnTsnr_fxl9pAtnxaPs7tl1vC8jlneqNyWeS20AdRccWEZilXToOBYMlNoUbPKama4ArDAdN4IbnRdcoumKfiUXI69W-8-BhOi3LShMV2neuOGIFEI4KxExIRe_EHXbvB9-k6yGquScSHKROFINd6F4I2VW99ulN9JBLl3KkenMjmVe6dylzJszITE9m_G_zb_H_oGGE14aQ</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Martín-Vaquero, J.</creator><creator>Vigo-Aguiar, J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080801</creationdate><title>Exponential fitted Gauss, Radau and Lobatto methods of low order</title><author>Martín-Vaquero, J. ; Vigo-Aguiar, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Collocation</topic><topic>Collocation methods</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Fittings</topic><topic>Mathematical models</topic><topic>Numeric Computing</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Roundoff error</topic><topic>Runge-Kutta method</topic><topic>Stability</topic><topic>Theory of Computation</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martín-Vaquero, J.</creatorcontrib><creatorcontrib>Vigo-Aguiar, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martín-Vaquero, J.</au><au>Vigo-Aguiar, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential fitted Gauss, Radau and Lobatto methods of low order</atitle><jtitle>Numerical algorithms</jtitle><stitle>Numer Algor</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>48</volume><issue>4</issue><spage>327</spage><epage>346</epage><pages>327-346</pages><issn>1017-1398</issn><eissn>1572-9265</eissn><abstract>Several exponential fitting Runge-Kutta methods of collocation type are derived as a generalization of the Gauss, Radau and Lobatto traditional methods of two steps. The new methods are capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. A different procedure to find the parameter of the method is proposed. The variable step Radau method of two stages is derived. Finally, numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11075-008-9202-y</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-1398
ispartof Numerical algorithms, 2008-08, Vol.48 (4), p.327-346
issn 1017-1398
1572-9265
language eng
recordid cdi_proquest_miscellaneous_1770326111
source Springer Nature
subjects Algebra
Algorithms
Collocation
Collocation methods
Computer Science
Differential equations
Fittings
Mathematical models
Numeric Computing
Numerical Analysis
Original Paper
Polynomials
Roundoff error
Runge-Kutta method
Stability
Theory of Computation
Truncation errors
title Exponential fitted Gauss, Radau and Lobatto methods of low order
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20fitted%20Gauss,%20Radau%20and%20Lobatto%20methods%20of%20low%20order&rft.jtitle=Numerical%20algorithms&rft.au=Mart%C3%ADn-Vaquero,%20J.&rft.date=2008-08-01&rft.volume=48&rft.issue=4&rft.spage=327&rft.epage=346&rft.pages=327-346&rft.issn=1017-1398&rft.eissn=1572-9265&rft_id=info:doi/10.1007/s11075-008-9202-y&rft_dat=%3Cproquest_cross%3E2918623776%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-4ca4f6497de01d3a37f217bcc173162e5d7928fd2e3a00f02d4c73ed963f1ec53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918623776&rft_id=info:pmid/&rfr_iscdi=true