Loading…
Nematic quantum criticality in three-dimensional Fermi system with quadratic band touching
We construct and discuss the field theory for tensorial nematic order parameter coupled to gapless four-component fermions at the quadratic band touching point in three (spatial) dimensions. Within a properly formulated epsilon-expansion this theory is found to have a quantum critical point, which d...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-07, Vol.92 (4), Article 045117 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct and discuss the field theory for tensorial nematic order parameter coupled to gapless four-component fermions at the quadratic band touching point in three (spatial) dimensions. Within a properly formulated epsilon-expansion this theory is found to have a quantum critical point, which describes the (presumably continuous) transition from the semimetal into a (nematic) Mott insulator. The latter phase breaks the rotational, but not the time-reversal, symmetry and may be relevant to materials such as gray tin or mercury telluride at low temperatures. The critical point represents a simple quantum analog of the familiar classical isotropic-to-nematic transition in liquid crystals. The properties and the consequences of this quantum critical point are discussed. Its existence supports the scenario of the "fixed-point collision," according to which three-dimensional Fermi systems with quadratic band touching and long-range Coulomb interactions are unstable towards the gapped nematic ground state at low temperatures. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.92.045117 |