Loading…

Some Insights Into Computational Models of (Patho)physiological Brain Activity

The amount of experimental data concerning physiology and anatomy of the nervous system is growing very fast, challenging our capacity to make comprehensive syntheses of the plethora of data available. Computer models of neuronal networks provide useful tools to construct such syntheses. They can be...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE 2006, Vol.94 (4), p.784-804
Main Authors: Suffczynski, P., Wendling, F., Bellanger, J.-J., Da Silva, F.H.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c466t-4493ce997112a498be4c1a3ef30cc100a44703b0701d7b504a434aacda6b6cf03
cites cdi_FETCH-LOGICAL-c466t-4493ce997112a498be4c1a3ef30cc100a44703b0701d7b504a434aacda6b6cf03
container_end_page 804
container_issue 4
container_start_page 784
container_title Proceedings of the IEEE
container_volume 94
creator Suffczynski, P.
Wendling, F.
Bellanger, J.-J.
Da Silva, F.H.L.
description The amount of experimental data concerning physiology and anatomy of the nervous system is growing very fast, challenging our capacity to make comprehensive syntheses of the plethora of data available. Computer models of neuronal networks provide useful tools to construct such syntheses. They can be used to interpret experimental data, generate experimentally testable predictions, and formulate new hypotheses regarding the function of the neural systems. Models can also act as a bridge between different levels of neuronal organization. The ultimate aim of computational neuroscience is to provide a link between behavior and underlying neural mechanisms. Depending on the specific aim of the model, there are different levels of neuronal organization at which the model can be set. Models are constructed at the microscopic (molecular and cellular), macroscopic level (local populations or systems), or dynamical systems level. Apart from purely computational models, hybrid networks are being developed in which biological neurons are connected in vitro to computer simulated neurons. Also, neuromorphic systems are recently being created using silicon chips that mimic computational operations in the brain. This paper reviews various computational models of the brain and insights obtained through their simulations.
doi_str_mv 10.1109/JPROC.2006.871773
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1770364895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1618636</ieee_id><sourcerecordid>1022899609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-4493ce997112a498be4c1a3ef30cc100a44703b0701d7b504a434aacda6b6cf03</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMoWKs_QNwMbqyLqTePySRLHXxUqi0-1kOaZtqUaVMnqdB_b2oFwYV0kwTyncO95yB0iqGLMcirx-HLoOgSAN4VOc5zuodaOMtESkjG91ELAItUEiwP0ZH3MwCgGact9Pzq5ibpLbydTIOPj-CSws2Xq6CCdQtVJ09ubGqfuCrpDFWYusvldO2tq93E6vh90yi7SK51sJ82rI_RQaVqb05-7jZ6v7t9Kx7S_uC-V1z3U804DyljkmojZY4xUUyKkWEaK2oqClpjAMVYDnQEOeBxPsqAKUaZUnqs-IjrCmgbXWx9l437WBkfyrn12tS1Whi38qWQnFDM49FGnX_JmBVQzoTMdkQJy3ZwBUKElBxkRM__oDO3amKycUqeiRhFvtkHbyHdOO8bU5XLxs5Vs45O5abg8rvgclNwuS04as62GmuM-eU5Fpxy-gWx1p9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865844970</pqid></control><display><type>article</type><title>Some Insights Into Computational Models of (Patho)physiological Brain Activity</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Suffczynski, P. ; Wendling, F. ; Bellanger, J.-J. ; Da Silva, F.H.L.</creator><creatorcontrib>Suffczynski, P. ; Wendling, F. ; Bellanger, J.-J. ; Da Silva, F.H.L.</creatorcontrib><description>The amount of experimental data concerning physiology and anatomy of the nervous system is growing very fast, challenging our capacity to make comprehensive syntheses of the plethora of data available. Computer models of neuronal networks provide useful tools to construct such syntheses. They can be used to interpret experimental data, generate experimentally testable predictions, and formulate new hypotheses regarding the function of the neural systems. Models can also act as a bridge between different levels of neuronal organization. The ultimate aim of computational neuroscience is to provide a link between behavior and underlying neural mechanisms. Depending on the specific aim of the model, there are different levels of neuronal organization at which the model can be set. Models are constructed at the microscopic (molecular and cellular), macroscopic level (local populations or systems), or dynamical systems level. Apart from purely computational models, hybrid networks are being developed in which biological neurons are connected in vitro to computer simulated neurons. Also, neuromorphic systems are recently being created using silicon chips that mimic computational operations in the brain. This paper reviews various computational models of the brain and insights obtained through their simulations.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2006.871773</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anatomy ; Anatomy &amp; physiology ; Biological neural networks ; Biological system modeling ; Biology computing ; Brain ; Brain modeling ; Computation ; Computational modeling ; computational neuroscience ; Computer networks ; Computer simulation ; Dynamical systems ; Dynamics ; Mathematical models ; Nervous system ; Networks ; Neurons ; Organizations ; Physiology ; simulation ; Studies</subject><ispartof>Proceedings of the IEEE, 2006, Vol.94 (4), p.784-804</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-4493ce997112a498be4c1a3ef30cc100a44703b0701d7b504a434aacda6b6cf03</citedby><cites>FETCH-LOGICAL-c466t-4493ce997112a498be4c1a3ef30cc100a44703b0701d7b504a434aacda6b6cf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1618636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4022,27922,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Suffczynski, P.</creatorcontrib><creatorcontrib>Wendling, F.</creatorcontrib><creatorcontrib>Bellanger, J.-J.</creatorcontrib><creatorcontrib>Da Silva, F.H.L.</creatorcontrib><title>Some Insights Into Computational Models of (Patho)physiological Brain Activity</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>The amount of experimental data concerning physiology and anatomy of the nervous system is growing very fast, challenging our capacity to make comprehensive syntheses of the plethora of data available. Computer models of neuronal networks provide useful tools to construct such syntheses. They can be used to interpret experimental data, generate experimentally testable predictions, and formulate new hypotheses regarding the function of the neural systems. Models can also act as a bridge between different levels of neuronal organization. The ultimate aim of computational neuroscience is to provide a link between behavior and underlying neural mechanisms. Depending on the specific aim of the model, there are different levels of neuronal organization at which the model can be set. Models are constructed at the microscopic (molecular and cellular), macroscopic level (local populations or systems), or dynamical systems level. Apart from purely computational models, hybrid networks are being developed in which biological neurons are connected in vitro to computer simulated neurons. Also, neuromorphic systems are recently being created using silicon chips that mimic computational operations in the brain. This paper reviews various computational models of the brain and insights obtained through their simulations.</description><subject>Anatomy</subject><subject>Anatomy &amp; physiology</subject><subject>Biological neural networks</subject><subject>Biological system modeling</subject><subject>Biology computing</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>computational neuroscience</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Mathematical models</subject><subject>Nervous system</subject><subject>Networks</subject><subject>Neurons</subject><subject>Organizations</subject><subject>Physiology</subject><subject>simulation</subject><subject>Studies</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLAzEUhYMoWKs_QNwMbqyLqTePySRLHXxUqi0-1kOaZtqUaVMnqdB_b2oFwYV0kwTyncO95yB0iqGLMcirx-HLoOgSAN4VOc5zuodaOMtESkjG91ELAItUEiwP0ZH3MwCgGact9Pzq5ibpLbydTIOPj-CSws2Xq6CCdQtVJ09ubGqfuCrpDFWYusvldO2tq93E6vh90yi7SK51sJ82rI_RQaVqb05-7jZ6v7t9Kx7S_uC-V1z3U804DyljkmojZY4xUUyKkWEaK2oqClpjAMVYDnQEOeBxPsqAKUaZUnqs-IjrCmgbXWx9l437WBkfyrn12tS1Whi38qWQnFDM49FGnX_JmBVQzoTMdkQJy3ZwBUKElBxkRM__oDO3amKycUqeiRhFvtkHbyHdOO8bU5XLxs5Vs45O5abg8rvgclNwuS04as62GmuM-eU5Fpxy-gWx1p9M</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Suffczynski, P.</creator><creator>Wendling, F.</creator><creator>Bellanger, J.-J.</creator><creator>Da Silva, F.H.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>2006</creationdate><title>Some Insights Into Computational Models of (Patho)physiological Brain Activity</title><author>Suffczynski, P. ; Wendling, F. ; Bellanger, J.-J. ; Da Silva, F.H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-4493ce997112a498be4c1a3ef30cc100a44703b0701d7b504a434aacda6b6cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Anatomy</topic><topic>Anatomy &amp; physiology</topic><topic>Biological neural networks</topic><topic>Biological system modeling</topic><topic>Biology computing</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>computational neuroscience</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Mathematical models</topic><topic>Nervous system</topic><topic>Networks</topic><topic>Neurons</topic><topic>Organizations</topic><topic>Physiology</topic><topic>simulation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suffczynski, P.</creatorcontrib><creatorcontrib>Wendling, F.</creatorcontrib><creatorcontrib>Bellanger, J.-J.</creatorcontrib><creatorcontrib>Da Silva, F.H.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suffczynski, P.</au><au>Wendling, F.</au><au>Bellanger, J.-J.</au><au>Da Silva, F.H.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Insights Into Computational Models of (Patho)physiological Brain Activity</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2006</date><risdate>2006</risdate><volume>94</volume><issue>4</issue><spage>784</spage><epage>804</epage><pages>784-804</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>The amount of experimental data concerning physiology and anatomy of the nervous system is growing very fast, challenging our capacity to make comprehensive syntheses of the plethora of data available. Computer models of neuronal networks provide useful tools to construct such syntheses. They can be used to interpret experimental data, generate experimentally testable predictions, and formulate new hypotheses regarding the function of the neural systems. Models can also act as a bridge between different levels of neuronal organization. The ultimate aim of computational neuroscience is to provide a link between behavior and underlying neural mechanisms. Depending on the specific aim of the model, there are different levels of neuronal organization at which the model can be set. Models are constructed at the microscopic (molecular and cellular), macroscopic level (local populations or systems), or dynamical systems level. Apart from purely computational models, hybrid networks are being developed in which biological neurons are connected in vitro to computer simulated neurons. Also, neuromorphic systems are recently being created using silicon chips that mimic computational operations in the brain. This paper reviews various computational models of the brain and insights obtained through their simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2006.871773</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2006, Vol.94 (4), p.784-804
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_miscellaneous_1770364895
source IEEE Electronic Library (IEL) Journals
subjects Anatomy
Anatomy & physiology
Biological neural networks
Biological system modeling
Biology computing
Brain
Brain modeling
Computation
Computational modeling
computational neuroscience
Computer networks
Computer simulation
Dynamical systems
Dynamics
Mathematical models
Nervous system
Networks
Neurons
Organizations
Physiology
simulation
Studies
title Some Insights Into Computational Models of (Patho)physiological Brain Activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Insights%20Into%20Computational%20Models%20of%20(Patho)physiological%20Brain%20Activity&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Suffczynski,%20P.&rft.date=2006&rft.volume=94&rft.issue=4&rft.spage=784&rft.epage=804&rft.pages=784-804&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2006.871773&rft_dat=%3Cproquest_cross%3E1022899609%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c466t-4493ce997112a498be4c1a3ef30cc100a44703b0701d7b504a434aacda6b6cf03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865844970&rft_id=info:pmid/&rft_ieee_id=1618636&rfr_iscdi=true