Loading…
Biotremology
Animal communication, including that among humans, is fascinating in its efficiency, diversity and its complexity. The evolution of a communication signal requires that the encoded content sent by an organism (sender) is detected and decoded by a receiver, who then must respond in such a way that th...
Saved in:
Published in: | Current biology 2016-03, Vol.26 (5), p.R187-R191 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Animal communication, including that among humans, is fascinating in its efficiency, diversity and its complexity. The evolution of a communication signal requires that the encoded content sent by an organism (sender) is detected and decoded by a receiver, who then must respond in such a way that the fitness of the sender is increased. The signal could be visual, such as bright coloration or some stereotypical movement that attracts attention through the sense of sight. It could be chemical, such as a pheromone we detect by smell or taste, or it could be tactile, involving direct physical touch. It could be an acoustic wave, detected by an auditory organ as sound and perceived through the sense of hearing, or it could be a vibrational wave detected by a vibration receiver of another sort. The medium through which the signal is transmitted could be any that exists on the Earth (solid, liquid or gas), and each type of medium influences the type of signal that is able to most efficiently move through it.
Hill and Wessel provide a broad overview of the use of vibrational communication in animals. |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/j.cub.2016.01.054 |