Loading…
Engineering geological characteristics of the 1998 Adana-Ceyhan earthquake, with particular emphasis on liquefaction phenomena and the role of soil behaviour
The Adana-Ceyhan earthquake (Ms=6.2) occurred in the southern part of Turkey on 27 June 1998 and resulted in the loss of 145 lives and extensive damage to buildings in Ceyhan town and the settlement areas in its vicinity. Soil liquefaction, ground failure due to lateral spreading and rock falls occu...
Saved in:
Published in: | Bulletin of engineering geology and the environment 2000-10, Vol.59 (2), p.99-118 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Adana-Ceyhan earthquake (Ms=6.2) occurred in the southern part of Turkey on 27 June 1998 and resulted in the loss of 145 lives and extensive damage to buildings in Ceyhan town and the settlement areas in its vicinity. Soil liquefaction, ground failure due to lateral spreading and rock falls occurred. The area of Adana is characterised by a large alluvial basin with a delta shape. Most of the basin is filled with Quaternary recent Holocene deposits. The recent rapid deposition of sediments and the very shallow groundwater table throughout the basin create conditions conducive to liquefaction. The results of a preliminary investigation of soil liquefaction caused by the earthquake and liquefaction assessments based on field performance data are presented together with evaluations concerning the likely contribution of the soils to the damage sustained by buildings. The results of the liquefaction susceptibility analysis indicated that the data from the liquefied sites were within the empirical bounds suggested by the field-performance evaluation method. It was also shown that shallow sand layers should have liquefied and the surface disruption observed on the site could be predicted by the bounds used for the relationships between the thickness of liquefiable sediments and the overlying non-liquefiable soil. Site-response analyses based on acceleration response spectra from the actual earthquake's strong motion records revealed that soil behaviour was one of the most significant factors in the damage to buildings caused by the earthquake. |
---|---|
ISSN: | 1435-9529 1435-9537 |
DOI: | 10.1007/s100640000053 |