Loading…

Self-assembly and structural–functional flexibility of oxygenic photosynthetic machineries: personal perspectives

This short review, with a bit of historical aspect and a strong personal bias and emphases on open questions, is focusing on the (macro-)organization and structural–functional flexibilities of the photosynthetic apparatus of oxygenic photosynthetic organisms at different levels of the structural com...

Full description

Saved in:
Bibliographic Details
Published in:Photosynthesis research 2016-01, Vol.127 (1), p.131-150
Main Author: Garab, Győző
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This short review, with a bit of historical aspect and a strong personal bias and emphases on open questions, is focusing on the (macro-)organization and structural–functional flexibilities of the photosynthetic apparatus of oxygenic photosynthetic organisms at different levels of the structural complexity—selected problems that have attracted most my attention in the past years and decades. These include (i) the anisotropic organization of the pigment–protein complexes and photosynthetic membranes—a basic organizing principle of living matter, which can, and probably should be adopted to intelligent materials; (ii) the organization of protein complexes into chiral macrodomains, large self-assembling highly organized but structurally flexible entities with unique spectroscopic fingerprints—structures, where, important, high-level regulatory functions appear to 'reside’; (iii) a novel, dissipation-assisted mechanism of structural changes, based on a thermo-optic effect: ultrafast thermal transients in the close vicinity of dissipation of unused excitation energy, which is capable of inducing elementary structural changes; it makes plants capable of responding to excess excitation with reaction rates proportional to the overexcitation above the light-saturation of photosynthesis; (iv) the 3D ultrastructure of the granum-stroma thylakoid membrane assembly and other multilamellar membrane systems, and their remodelings—associated with regulatory mechanisms; (v) the molecular organization and structural–functional plasticity of the main light-harvesting complex of plants, in relation to their crystal structure and different in vivo and in vitro states; and (vi) the enigmatic role of non-bilayer lipids and lipid phases in the bilayer thylakoid membrane—warranting its high protein content and contributing to its structural flexibility.
ISSN:0166-8595
1573-5079
DOI:10.1007/s11120-015-0192-z