Loading…
Investigating the effect of silver coating on the solubility, antibacterial properties, and cytocompatibility of glass microspheres
Silver (Ag) coatings have been incorporated into many medical materials due to its ability to eradicate harmful microbes. In this study, glass microspheres (SiO2–Na2O–CaO–Al2O3) were synthesized and employed as substrates to investigate the effect Ag coating has on glass solubility and the subsequen...
Saved in:
Published in: | Journal of biomaterials applications 2015-10, Vol.30 (4), p.450-462 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Silver (Ag) coatings have been incorporated into many medical materials due to its ability to eradicate harmful microbes. In this study, glass microspheres (SiO2–Na2O–CaO–Al2O3) were synthesized and employed as substrates to investigate the effect Ag coating has on glass solubility and the subsequent biological effects. Initially, glasses were amorphous with a glass transition point (Tg) of 605℃ and microspheres were spherical with a mean particle diameter of 120 µm (±27). The Ag coating was determined to be crystalline in nature and its presence was confirmed using scanning electron microscopy and X-ray photoelectron spectroscopy. Ion release determined that Ag-coated (Ag-S) microspheres increased the Na+ release rate but slightly reduced the Ca2+ and Si4+ release compared to an uncoated control (UC-S). Additionally, the Ag-S reduced the pH to just above neutral (7.3–8.5) compared to the UC-S (7.7–9.1). Antibacterial testing determined significant reductions in planktonic Escherichia coli (p = 0.000), Staphylococcus epidermidis (p = 0.000) and Staphylococcus aureus (p = 0.000) growth as a function of the presence of Ag and with respect to maturation (1, 7, and 30 days). Testing for toxicity levels using L929 Fibroblasts determined higher cell viability for the Ag-S at lower concentrations (5 µg/ml); in addition, no significant reduction in cell viability was observed with higher concentrations (15, 30 µg/ml). |
---|---|
ISSN: | 0885-3282 1530-8022 |
DOI: | 10.1177/0885328215591902 |