Loading…
Statistical Estimation for a Class of Self-Regulating Processes
Self-regulating processes are stochastic processes whose local regularity, as measured by the pointwise Hölder exponent, is a function of amplitude. They seem to provide relevant models for various signals arising for example in geophysics or biomedicine. We propose in this work an estimator of the...
Saved in:
Published in: | Scandinavian journal of statistics 2015-06, Vol.42 (2), p.485-503 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Self-regulating processes are stochastic processes whose local regularity, as measured by the pointwise Hölder exponent, is a function of amplitude. They seem to provide relevant models for various signals arising for example in geophysics or biomedicine. We propose in this work an estimator of the self-regulating function (that is, the function relating amplitude and Hölder regularity) of the self-regulating midpoint displacement process and study some of its properties. We prove that it is almost surely convergent and obtain a central limit theorem. Numerical simulations show that the estimator behaves well in practice. |
---|---|
ISSN: | 0303-6898 1467-9469 |
DOI: | 10.1111/sjos.12118 |