Loading…

Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells

In this research, linear thermal buckling of a composite conical shell made from a polymeric matrix and reinforced with carbon nanotube fibres is investigated. Distribution of reinforcements across the shell thickness is assumed to be uniform or functionally graded. Thermomechanical properties of th...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace science and technology 2015-12, Vol.47, p.42-53
Main Authors: Mirzaei, M., Kiani, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this research, linear thermal buckling of a composite conical shell made from a polymeric matrix and reinforced with carbon nanotube fibres is investigated. Distribution of reinforcements across the shell thickness is assumed to be uniform or functionally graded. Thermomechanical properties of the constituents are temperature dependent. Under the assumption of first order shear deformation shell theory, Donnell kinematic assumptions and von Kármán type of geometrical nonlinearity, the complete set of equilibrium equations and boundary conditions of the shell are obtained. A linear membrane analysis is carried out to obtain the pre-buckling thermal stresses of the shell. Adjacent equilibrium criterion is implemented to establish the stability equations associated with the buckling state. The resulting equations are discreted by means of trigonometric expansion through the circumferential direction and discrete singular convolution method through the shell length. The established eigenvalue problem is solved iteratively to obtain the critical buckling temperature and critical mode number. Parametric studies are presented to explore the influences of semi-vertex angle, volume fraction of CNTs, distribution pattern of CNTs and boundary conditions. It is shown that, conical shells with intermediate carbon nanotube volume fraction do not have, necessarily, intermediate critical buckling temperature.
ISSN:1270-9638
1626-3219
DOI:10.1016/j.ast.2015.09.011