Loading…

Numerical investigation of flow structures around a cylindrical afterbody under supersonic condition

Large Eddy Simulation (LES) with dynamic Smagorinsky model has been applied to numerically investigate the complicated flow structures that evolve in the near wake of a cylindrical after body aligned with a uniform Mach 2.46 flow. Mean flow field properties obtained from numerical simulations, such...

Full description

Saved in:
Bibliographic Details
Published in:Aerospace science and technology 2015-12, Vol.47, p.195-209
Main Authors: Das, Pratik, De, Ashoke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large Eddy Simulation (LES) with dynamic Smagorinsky model has been applied to numerically investigate the complicated flow structures that evolve in the near wake of a cylindrical after body aligned with a uniform Mach 2.46 flow. Mean flow field properties obtained from numerical simulations, such as axial velocity, pressure on base surface, have been compared with the experimental measurements as well as with other published results. It has been found that standard k–epsilon model fails to predict the flow properties in the recirculation region where better agreement has been observed between the data obtained from LES and experimental measurements. Flow Statistics like turbulent kinetic energy and primary Reynolds' stress have also been calculated and compared with the results obtained from experiments in order to quantitatively assess the ability of LES technique to predict the turbulence properties of flow field in the highly compressible shear layer region. The data obtained from LES has been further analyzed to understand the evolution of coherent structures in the flow field. Proper Orthogonal Decomposition (POD) of the data obtained from central plane in the wake region has been performed in order to reveal the most energetic structures present in the flow field.
ISSN:1270-9638
1626-3219
DOI:10.1016/j.ast.2015.09.032