Loading…

Cisgenesis and genome editing: combining concepts and efforts for a smarter use of genetic resources in crop breeding

Plant genetic resources (PGR) represent valuable sources of genetic variability for crop breeding. The development of novel biotechnologies is necessary for increasing the efficiency of their use in pre‐breeding and breeding work. The genome sequencing of hundreds of genotypes and the mining of alle...

Full description

Saved in:
Bibliographic Details
Published in:Plant breeding 2016-04, Vol.135 (2), p.139-147
Main Author: Cardi, Teodoro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plant genetic resources (PGR) represent valuable sources of genetic variability for crop breeding. The development of novel biotechnologies is necessary for increasing the efficiency of their use in pre‐breeding and breeding work. The genome sequencing of hundreds of genotypes and the mining of allele diversity in major crops and populations of landraces and wild relatives allow the isolation of genes underlying characters of interest and their precise modification or transfer into targeted varieties. The technological developments and applications of new plant breeding techniques (NPBT) that maximize the similarity with gene transfer by crossing (cisgenesis/intragenesis) or the accuracy of biotechnological approaches (genome editing) are reviewed. Their potentialities and current limitations as well as the possible advantages of using them separately or combined for the exploitation of PGR in crop breeding are also discussed. Above‐mentioned NPBT tackle some objections to the application of biotechnologies in agriculture and are under review worldwide to assess the possible exclusion from the current regulation systems for genetically modified plants.
ISSN:0179-9541
1439-0523
DOI:10.1111/pbr.12345