Loading…

Modeling of Solid/Liquid/Gas Mass Transfer for Environmental Evaluation of Cement-Based Solidified Waste

A physicochemical and transport model has been developed for the long term prediction of environmental leaching behavior of porous materials containing inorganic waste solidified with hydraulic binders and placed in a reuse scenario. The reuse scenario considered in the paper is a storage tank open...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2001-01, Vol.35 (1), p.149-156
Main Authors: Tiruta-Barna, Ligia R, Barna, Radu, Moszkowicz, Pierre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A physicochemical and transport model has been developed for the long term prediction of environmental leaching behavior of porous materials containing inorganic waste solidified with hydraulic binders and placed in a reuse scenario. The reuse scenario considered in the paper is a storage tank open to the atmosphere including material leaching with water and carbonation through the leachate contact with air. The model includes three levels:  (i) the physicochemical pollution source term (chemical equilibria in the pore water and diffusion in the porous system); (ii) chemical equilibria and mass transfer in the tank; and (iii) gas/liquid transfer of carbon dioxide. The model was applied to the case of a material obtained through solidification of Air Pollution Control (APC) residues from Municipal Solid Waste Incinerator (MSWI). The simulation results are in good agreement with two scale experimental data:  laboratory and field tests. Experimental data and simulations show the main trends for release of elements contained in the material:  (i) the release of alkaline metals and chloride is not significantly influenced by carbonation and (ii) the release of Ca and Pb is governed by chemical equilibria in pore water and diffusion, while their speciation in the leachate is determined by pH and the presence of carbonate ions.
ISSN:0013-936X
1520-5851
DOI:10.1021/es000005w