Loading…
Roles and regulation of the matrix metalloproteinase system in parturition
SUMMARY Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metallop...
Saved in:
Published in: | Molecular reproduction and development 2016-04, Vol.83 (4), p.276-286 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | SUMMARY
Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metalloproteinases (MMPs), are required for the final steps of parturition. MMPs participate in physiological degradation and remodeling through their proteolytic activities on specific substrates, and are balanced by the action of their inhibitors. Disruption to this balance can result in pathological stress that ends with preterm or post‐term birth or pre‐eclampsia. In this review, we examine the roles and regulation of the MMP system in physiological and pathological labor, and propose a model that illustrates the mechanisms by which the MMP system contributes to these processes. Mol. Reprod. Dev. 83: 276–286, 2016. © 2016 Wiley Periodicals, Inc. |
---|---|
ISSN: | 1040-452X 1098-2795 |
DOI: | 10.1002/mrd.22626 |