Loading…

A Cellular Metalloproteinase Activates Vibrio cholerae Pro-cytolysin

Many strains of Vibrio cholerae produce a cytolysin (VCC) that forms oligomeric transmembrane pores in animal cells. The molecule is secreted as a procytolysin (pro-VCC) of 79 kDa that must be cleaved at the N terminus to generate the active 65-kDa toxin. Processing can occur in solution, and previo...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-06, Vol.279 (24), p.25143-25148
Main Authors: Valeva, Angela, Walev, Ivan, Weis, Silvia, Boukhallouk, Fatima, Wassenaar, Trudy M., Endres, Kristina, Fahrenholz, Falk, Bhakdi, Sucharit, Zitzer, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many strains of Vibrio cholerae produce a cytolysin (VCC) that forms oligomeric transmembrane pores in animal cells. The molecule is secreted as a procytolysin (pro-VCC) of 79 kDa that must be cleaved at the N terminus to generate the active 65-kDa toxin. Processing can occur in solution, and previous studies have described the action of mature VCC thus generated. However, little is known about the properties of pro-VCC itself. In this study, it is shown that pro-VCC exist as a monomer in solution and binds as a monomer to eukaryotic cells. Bound pro-VCC can then be activated either by exogenous, extracellular, or by endogenous, cell-bound proteases. In both cases, cleavage generates the 65-kDa VCC that oligomerizes to form transmembrane pores. A wide variety of exogenous proteinases can mediate activation. In contrast, the activating cellular protease is selectively inhibited by the hydroxamate inhibitor TAPI, and thus probable candidates are members of the ADAM-metalloproteinase family. Furin, MMP-2, MMP-9, and serine proteinases were excluded. Cells over-expressing ADAM-17, also known as tumor necrosis factor α converting enzyme, displayed increased activation of VCC, and knockout cells lacking ADAM-17 had a markedly decreased capacity to cleave the protoxin. The possibility is raised that pro-VCC is targeted to membrane sites that selectively contain or are accessible to cellular ADAM-metalloproteinases. Although many microbial toxins are activated by furin, this is the first evidence for processing by a cellular metalloproteinase. We identified ADAM-17 as a potent activator of pro-VCC.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M313913200