Loading…
Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro
Abstract Current models for in vitro fibrosis consist of simple mono-layer cultures of rodent hepatic stellate cells (HSC), ignoring the role of hepatocyte injury. We aimed to develop a method allowing the detection of hepatocyte-mediated and drug-induced liver fibrosis. We used HepaRG (Hep) and pri...
Saved in:
Published in: | Biomaterials 2016-02, Vol.78, p.1-10 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Current models for in vitro fibrosis consist of simple mono-layer cultures of rodent hepatic stellate cells (HSC), ignoring the role of hepatocyte injury. We aimed to develop a method allowing the detection of hepatocyte-mediated and drug-induced liver fibrosis. We used HepaRG (Hep) and primary human HSCs cultured as 3D spheroids in 96-well plates. These resulting scaffold-free organoids were characterized for CYP induction, albumin secretion, and hepatocyte and HSC-specific gene expression by qPCR. The metabolic competence of the organoid over 21 days allows activation of HSCs in the organoid in a drug- and hepatocyte-dependent manner. After a single dose or repeated exposure for 14 days to the pro-fibrotic compounds Allyl alcohol and Methotrexate, hepatic organoids display fibrotic features such as HSC activation, collagen secretion and deposition. Acetaminophen was identified by these organoids as an inducer of hepatotoxic-mediated HSC activation which was confirmed in vivo in mice. This novel hepatic organoid culture model is the first that can detect hepatocyte-dependent and compound-induced HSC activation, thereby representing an important step forward towards in vitro compound testing for drug-induced liver fibrosis. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2015.11.026 |