Loading…
Fabrication of broad area optical nanostructures for high throughput chemical sensing
In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithograp...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2013-10, Vol.187, p.356-362 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643 |
container_end_page | 362 |
container_issue | |
container_start_page | 356 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 187 |
creator | Rodríguez-Franco, P. Arriola, A. Darwish, N. Jaramillo, J.J. Keshmiri, H. Tavera, T. Olaizola, S.M. Moreno, M. |
description | In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithography (LIL) and interrogated them with white light. The reflected single wavelength shifted with changes of the external medium's refractive index (RI), resolving variations of 7.3×10−5 refractive index units (RIU). To exploit the broad active areas fabricated, we developed a custom instrument to acquire spatial maps of the resonance. We called the technique broad area resonance scan (BARS) and used it to characterize the geometric and material uniformity of the surfaces. We suggest this as an in situ practice to characterize photonic crystals and also as a method to scan highly parallelized analysis on a single chip in real time. In addition to a refractometric label-free application, we demonstrated a fluorescent-based measurement with the same readout and found state of the art sensitivities. Thus, the multimethod platform presented is able to double prove an assay with a single experiment in addition to its ability to screen large numbers of interactions using low volume of reagents. |
doi_str_mv | 10.1016/j.snb.2012.12.039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786167154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400512013482</els_id><sourcerecordid>1786167154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouH78AE_m6KXrTNM2WzyJ-AWCB_UcknSyzbLbrEkq-O_Nup6FgWGY532HeYviAmGOgO31ah5HPa8Aq3ku4N1BMcOF4CUHIQ6LGXRVU9YAzXFxEuMKAGrewqz4eFA6OKOS8yPzlungVc9UIMX8NuXFmo1q9DGFyaQpUGTWBza45cDSEPy0HLZTYmagzS8baYxuXJ4VR1atI53_9dN85_797ql8eX18vrt9KQ3vMJWmpkXFhW4MoRC1zSPWDRAp6BYd6l5o1bXWdFhroXVvtREIwFtrOdi25qfF1d53G_znRDHJjYuG1ms1kp-iRLFosRXY7FDcoyb4GANZuQ1uo8K3RJC7COVK5gjlLkKZK0eYNZd7jVVeqmVwUX68ZaABQBRV22TiZk9Q_vLLUZDROBoN9S6QSbL37h__HwR1g-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786167154</pqid></control><display><type>article</type><title>Fabrication of broad area optical nanostructures for high throughput chemical sensing</title><source>Elsevier</source><creator>Rodríguez-Franco, P. ; Arriola, A. ; Darwish, N. ; Jaramillo, J.J. ; Keshmiri, H. ; Tavera, T. ; Olaizola, S.M. ; Moreno, M.</creator><creatorcontrib>Rodríguez-Franco, P. ; Arriola, A. ; Darwish, N. ; Jaramillo, J.J. ; Keshmiri, H. ; Tavera, T. ; Olaizola, S.M. ; Moreno, M.</creatorcontrib><description>In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithography (LIL) and interrogated them with white light. The reflected single wavelength shifted with changes of the external medium's refractive index (RI), resolving variations of 7.3×10−5 refractive index units (RIU). To exploit the broad active areas fabricated, we developed a custom instrument to acquire spatial maps of the resonance. We called the technique broad area resonance scan (BARS) and used it to characterize the geometric and material uniformity of the surfaces. We suggest this as an in situ practice to characterize photonic crystals and also as a method to scan highly parallelized analysis on a single chip in real time. In addition to a refractometric label-free application, we demonstrated a fluorescent-based measurement with the same readout and found state of the art sensitivities. Thus, the multimethod platform presented is able to double prove an assay with a single experiment in addition to its ability to screen large numbers of interactions using low volume of reagents.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2012.12.039</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biosensors ; Chemical sensors ; crystals ; Diffraction gratings ; Finite-difference time-domain (FDTD) methods ; Fluorescence labeling ; Gratings (spectra) ; High throughput ; Label-free biosensors ; Laser interference lithography (LIL) ; Lithography ; Mass production ; nanomaterials ; Nanostructure ; Optical resonant sensors ; Refractive index ; Refractivity ; wavelengths ; White light</subject><ispartof>Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.356-362</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643</citedby><cites>FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Rodríguez-Franco, P.</creatorcontrib><creatorcontrib>Arriola, A.</creatorcontrib><creatorcontrib>Darwish, N.</creatorcontrib><creatorcontrib>Jaramillo, J.J.</creatorcontrib><creatorcontrib>Keshmiri, H.</creatorcontrib><creatorcontrib>Tavera, T.</creatorcontrib><creatorcontrib>Olaizola, S.M.</creatorcontrib><creatorcontrib>Moreno, M.</creatorcontrib><title>Fabrication of broad area optical nanostructures for high throughput chemical sensing</title><title>Sensors and actuators. B, Chemical</title><description>In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithography (LIL) and interrogated them with white light. The reflected single wavelength shifted with changes of the external medium's refractive index (RI), resolving variations of 7.3×10−5 refractive index units (RIU). To exploit the broad active areas fabricated, we developed a custom instrument to acquire spatial maps of the resonance. We called the technique broad area resonance scan (BARS) and used it to characterize the geometric and material uniformity of the surfaces. We suggest this as an in situ practice to characterize photonic crystals and also as a method to scan highly parallelized analysis on a single chip in real time. In addition to a refractometric label-free application, we demonstrated a fluorescent-based measurement with the same readout and found state of the art sensitivities. Thus, the multimethod platform presented is able to double prove an assay with a single experiment in addition to its ability to screen large numbers of interactions using low volume of reagents.</description><subject>Biosensors</subject><subject>Chemical sensors</subject><subject>crystals</subject><subject>Diffraction gratings</subject><subject>Finite-difference time-domain (FDTD) methods</subject><subject>Fluorescence labeling</subject><subject>Gratings (spectra)</subject><subject>High throughput</subject><subject>Label-free biosensors</subject><subject>Laser interference lithography (LIL)</subject><subject>Lithography</subject><subject>Mass production</subject><subject>nanomaterials</subject><subject>Nanostructure</subject><subject>Optical resonant sensors</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>wavelengths</subject><subject>White light</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouH78AE_m6KXrTNM2WzyJ-AWCB_UcknSyzbLbrEkq-O_Nup6FgWGY532HeYviAmGOgO31ah5HPa8Aq3ku4N1BMcOF4CUHIQ6LGXRVU9YAzXFxEuMKAGrewqz4eFA6OKOS8yPzlungVc9UIMX8NuXFmo1q9DGFyaQpUGTWBza45cDSEPy0HLZTYmagzS8baYxuXJ4VR1atI53_9dN85_797ql8eX18vrt9KQ3vMJWmpkXFhW4MoRC1zSPWDRAp6BYd6l5o1bXWdFhroXVvtREIwFtrOdi25qfF1d53G_znRDHJjYuG1ms1kp-iRLFosRXY7FDcoyb4GANZuQ1uo8K3RJC7COVK5gjlLkKZK0eYNZd7jVVeqmVwUX68ZaABQBRV22TiZk9Q_vLLUZDROBoN9S6QSbL37h__HwR1g-Y</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Rodríguez-Franco, P.</creator><creator>Arriola, A.</creator><creator>Darwish, N.</creator><creator>Jaramillo, J.J.</creator><creator>Keshmiri, H.</creator><creator>Tavera, T.</creator><creator>Olaizola, S.M.</creator><creator>Moreno, M.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Fabrication of broad area optical nanostructures for high throughput chemical sensing</title><author>Rodríguez-Franco, P. ; Arriola, A. ; Darwish, N. ; Jaramillo, J.J. ; Keshmiri, H. ; Tavera, T. ; Olaizola, S.M. ; Moreno, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biosensors</topic><topic>Chemical sensors</topic><topic>crystals</topic><topic>Diffraction gratings</topic><topic>Finite-difference time-domain (FDTD) methods</topic><topic>Fluorescence labeling</topic><topic>Gratings (spectra)</topic><topic>High throughput</topic><topic>Label-free biosensors</topic><topic>Laser interference lithography (LIL)</topic><topic>Lithography</topic><topic>Mass production</topic><topic>nanomaterials</topic><topic>Nanostructure</topic><topic>Optical resonant sensors</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>wavelengths</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Franco, P.</creatorcontrib><creatorcontrib>Arriola, A.</creatorcontrib><creatorcontrib>Darwish, N.</creatorcontrib><creatorcontrib>Jaramillo, J.J.</creatorcontrib><creatorcontrib>Keshmiri, H.</creatorcontrib><creatorcontrib>Tavera, T.</creatorcontrib><creatorcontrib>Olaizola, S.M.</creatorcontrib><creatorcontrib>Moreno, M.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Franco, P.</au><au>Arriola, A.</au><au>Darwish, N.</au><au>Jaramillo, J.J.</au><au>Keshmiri, H.</au><au>Tavera, T.</au><au>Olaizola, S.M.</au><au>Moreno, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of broad area optical nanostructures for high throughput chemical sensing</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>187</volume><spage>356</spage><epage>362</epage><pages>356-362</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithography (LIL) and interrogated them with white light. The reflected single wavelength shifted with changes of the external medium's refractive index (RI), resolving variations of 7.3×10−5 refractive index units (RIU). To exploit the broad active areas fabricated, we developed a custom instrument to acquire spatial maps of the resonance. We called the technique broad area resonance scan (BARS) and used it to characterize the geometric and material uniformity of the surfaces. We suggest this as an in situ practice to characterize photonic crystals and also as a method to scan highly parallelized analysis on a single chip in real time. In addition to a refractometric label-free application, we demonstrated a fluorescent-based measurement with the same readout and found state of the art sensitivities. Thus, the multimethod platform presented is able to double prove an assay with a single experiment in addition to its ability to screen large numbers of interactions using low volume of reagents.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2012.12.039</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.356-362 |
issn | 0925-4005 1873-3077 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786167154 |
source | Elsevier |
subjects | Biosensors Chemical sensors crystals Diffraction gratings Finite-difference time-domain (FDTD) methods Fluorescence labeling Gratings (spectra) High throughput Label-free biosensors Laser interference lithography (LIL) Lithography Mass production nanomaterials Nanostructure Optical resonant sensors Refractive index Refractivity wavelengths White light |
title | Fabrication of broad area optical nanostructures for high throughput chemical sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20broad%20area%20optical%20nanostructures%20for%20high%20throughput%20chemical%20sensing&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Rodr%C3%ADguez-Franco,%20P.&rft.date=2013-10-01&rft.volume=187&rft.spage=356&rft.epage=362&rft.pages=356-362&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2012.12.039&rft_dat=%3Cproquest_cross%3E1786167154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786167154&rft_id=info:pmid/&rfr_iscdi=true |