Loading…

Fabrication of broad area optical nanostructures for high throughput chemical sensing

In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithograp...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2013-10, Vol.187, p.356-362
Main Authors: Rodríguez-Franco, P., Arriola, A., Darwish, N., Jaramillo, J.J., Keshmiri, H., Tavera, T., Olaizola, S.M., Moreno, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643
cites cdi_FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643
container_end_page 362
container_issue
container_start_page 356
container_title Sensors and actuators. B, Chemical
container_volume 187
creator Rodríguez-Franco, P.
Arriola, A.
Darwish, N.
Jaramillo, J.J.
Keshmiri, H.
Tavera, T.
Olaizola, S.M.
Moreno, M.
description In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithography (LIL) and interrogated them with white light. The reflected single wavelength shifted with changes of the external medium's refractive index (RI), resolving variations of 7.3×10−5 refractive index units (RIU). To exploit the broad active areas fabricated, we developed a custom instrument to acquire spatial maps of the resonance. We called the technique broad area resonance scan (BARS) and used it to characterize the geometric and material uniformity of the surfaces. We suggest this as an in situ practice to characterize photonic crystals and also as a method to scan highly parallelized analysis on a single chip in real time. In addition to a refractometric label-free application, we demonstrated a fluorescent-based measurement with the same readout and found state of the art sensitivities. Thus, the multimethod platform presented is able to double prove an assay with a single experiment in addition to its ability to screen large numbers of interactions using low volume of reagents.
doi_str_mv 10.1016/j.snb.2012.12.039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786167154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400512013482</els_id><sourcerecordid>1786167154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouH78AE_m6KXrTNM2WzyJ-AWCB_UcknSyzbLbrEkq-O_Nup6FgWGY532HeYviAmGOgO31ah5HPa8Aq3ku4N1BMcOF4CUHIQ6LGXRVU9YAzXFxEuMKAGrewqz4eFA6OKOS8yPzlungVc9UIMX8NuXFmo1q9DGFyaQpUGTWBza45cDSEPy0HLZTYmagzS8baYxuXJ4VR1atI53_9dN85_797ql8eX18vrt9KQ3vMJWmpkXFhW4MoRC1zSPWDRAp6BYd6l5o1bXWdFhroXVvtREIwFtrOdi25qfF1d53G_znRDHJjYuG1ms1kp-iRLFosRXY7FDcoyb4GANZuQ1uo8K3RJC7COVK5gjlLkKZK0eYNZd7jVVeqmVwUX68ZaABQBRV22TiZk9Q_vLLUZDROBoN9S6QSbL37h__HwR1g-Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786167154</pqid></control><display><type>article</type><title>Fabrication of broad area optical nanostructures for high throughput chemical sensing</title><source>Elsevier</source><creator>Rodríguez-Franco, P. ; Arriola, A. ; Darwish, N. ; Jaramillo, J.J. ; Keshmiri, H. ; Tavera, T. ; Olaizola, S.M. ; Moreno, M.</creator><creatorcontrib>Rodríguez-Franco, P. ; Arriola, A. ; Darwish, N. ; Jaramillo, J.J. ; Keshmiri, H. ; Tavera, T. ; Olaizola, S.M. ; Moreno, M.</creatorcontrib><description>In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithography (LIL) and interrogated them with white light. The reflected single wavelength shifted with changes of the external medium's refractive index (RI), resolving variations of 7.3×10−5 refractive index units (RIU). To exploit the broad active areas fabricated, we developed a custom instrument to acquire spatial maps of the resonance. We called the technique broad area resonance scan (BARS) and used it to characterize the geometric and material uniformity of the surfaces. We suggest this as an in situ practice to characterize photonic crystals and also as a method to scan highly parallelized analysis on a single chip in real time. In addition to a refractometric label-free application, we demonstrated a fluorescent-based measurement with the same readout and found state of the art sensitivities. Thus, the multimethod platform presented is able to double prove an assay with a single experiment in addition to its ability to screen large numbers of interactions using low volume of reagents.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2012.12.039</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biosensors ; Chemical sensors ; crystals ; Diffraction gratings ; Finite-difference time-domain (FDTD) methods ; Fluorescence labeling ; Gratings (spectra) ; High throughput ; Label-free biosensors ; Laser interference lithography (LIL) ; Lithography ; Mass production ; nanomaterials ; Nanostructure ; Optical resonant sensors ; Refractive index ; Refractivity ; wavelengths ; White light</subject><ispartof>Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.356-362</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643</citedby><cites>FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Rodríguez-Franco, P.</creatorcontrib><creatorcontrib>Arriola, A.</creatorcontrib><creatorcontrib>Darwish, N.</creatorcontrib><creatorcontrib>Jaramillo, J.J.</creatorcontrib><creatorcontrib>Keshmiri, H.</creatorcontrib><creatorcontrib>Tavera, T.</creatorcontrib><creatorcontrib>Olaizola, S.M.</creatorcontrib><creatorcontrib>Moreno, M.</creatorcontrib><title>Fabrication of broad area optical nanostructures for high throughput chemical sensing</title><title>Sensors and actuators. B, Chemical</title><description>In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithography (LIL) and interrogated them with white light. The reflected single wavelength shifted with changes of the external medium's refractive index (RI), resolving variations of 7.3×10−5 refractive index units (RIU). To exploit the broad active areas fabricated, we developed a custom instrument to acquire spatial maps of the resonance. We called the technique broad area resonance scan (BARS) and used it to characterize the geometric and material uniformity of the surfaces. We suggest this as an in situ practice to characterize photonic crystals and also as a method to scan highly parallelized analysis on a single chip in real time. In addition to a refractometric label-free application, we demonstrated a fluorescent-based measurement with the same readout and found state of the art sensitivities. Thus, the multimethod platform presented is able to double prove an assay with a single experiment in addition to its ability to screen large numbers of interactions using low volume of reagents.</description><subject>Biosensors</subject><subject>Chemical sensors</subject><subject>crystals</subject><subject>Diffraction gratings</subject><subject>Finite-difference time-domain (FDTD) methods</subject><subject>Fluorescence labeling</subject><subject>Gratings (spectra)</subject><subject>High throughput</subject><subject>Label-free biosensors</subject><subject>Laser interference lithography (LIL)</subject><subject>Lithography</subject><subject>Mass production</subject><subject>nanomaterials</subject><subject>Nanostructure</subject><subject>Optical resonant sensors</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>wavelengths</subject><subject>White light</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouH78AE_m6KXrTNM2WzyJ-AWCB_UcknSyzbLbrEkq-O_Nup6FgWGY532HeYviAmGOgO31ah5HPa8Aq3ku4N1BMcOF4CUHIQ6LGXRVU9YAzXFxEuMKAGrewqz4eFA6OKOS8yPzlungVc9UIMX8NuXFmo1q9DGFyaQpUGTWBza45cDSEPy0HLZTYmagzS8baYxuXJ4VR1atI53_9dN85_797ql8eX18vrt9KQ3vMJWmpkXFhW4MoRC1zSPWDRAp6BYd6l5o1bXWdFhroXVvtREIwFtrOdi25qfF1d53G_znRDHJjYuG1ms1kp-iRLFosRXY7FDcoyb4GANZuQ1uo8K3RJC7COVK5gjlLkKZK0eYNZd7jVVeqmVwUX68ZaABQBRV22TiZk9Q_vLLUZDROBoN9S6QSbL37h__HwR1g-Y</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Rodríguez-Franco, P.</creator><creator>Arriola, A.</creator><creator>Darwish, N.</creator><creator>Jaramillo, J.J.</creator><creator>Keshmiri, H.</creator><creator>Tavera, T.</creator><creator>Olaizola, S.M.</creator><creator>Moreno, M.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Fabrication of broad area optical nanostructures for high throughput chemical sensing</title><author>Rodríguez-Franco, P. ; Arriola, A. ; Darwish, N. ; Jaramillo, J.J. ; Keshmiri, H. ; Tavera, T. ; Olaizola, S.M. ; Moreno, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biosensors</topic><topic>Chemical sensors</topic><topic>crystals</topic><topic>Diffraction gratings</topic><topic>Finite-difference time-domain (FDTD) methods</topic><topic>Fluorescence labeling</topic><topic>Gratings (spectra)</topic><topic>High throughput</topic><topic>Label-free biosensors</topic><topic>Laser interference lithography (LIL)</topic><topic>Lithography</topic><topic>Mass production</topic><topic>nanomaterials</topic><topic>Nanostructure</topic><topic>Optical resonant sensors</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>wavelengths</topic><topic>White light</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Franco, P.</creatorcontrib><creatorcontrib>Arriola, A.</creatorcontrib><creatorcontrib>Darwish, N.</creatorcontrib><creatorcontrib>Jaramillo, J.J.</creatorcontrib><creatorcontrib>Keshmiri, H.</creatorcontrib><creatorcontrib>Tavera, T.</creatorcontrib><creatorcontrib>Olaizola, S.M.</creatorcontrib><creatorcontrib>Moreno, M.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Franco, P.</au><au>Arriola, A.</au><au>Darwish, N.</au><au>Jaramillo, J.J.</au><au>Keshmiri, H.</au><au>Tavera, T.</au><au>Olaizola, S.M.</au><au>Moreno, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of broad area optical nanostructures for high throughput chemical sensing</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>187</volume><spage>356</spage><epage>362</epage><pages>356-362</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>In this work, we implement an optical resonant sensor with high throughput capabilities to act as chemical or biosensor. We optimized the diffraction grating structures by FDTD simulations. Based on this study, we produced dielectric diffractive gratings in 1cm2 areas by laser interference lithography (LIL) and interrogated them with white light. The reflected single wavelength shifted with changes of the external medium's refractive index (RI), resolving variations of 7.3×10−5 refractive index units (RIU). To exploit the broad active areas fabricated, we developed a custom instrument to acquire spatial maps of the resonance. We called the technique broad area resonance scan (BARS) and used it to characterize the geometric and material uniformity of the surfaces. We suggest this as an in situ practice to characterize photonic crystals and also as a method to scan highly parallelized analysis on a single chip in real time. In addition to a refractometric label-free application, we demonstrated a fluorescent-based measurement with the same readout and found state of the art sensitivities. Thus, the multimethod platform presented is able to double prove an assay with a single experiment in addition to its ability to screen large numbers of interactions using low volume of reagents.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2012.12.039</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.356-362
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1786167154
source Elsevier
subjects Biosensors
Chemical sensors
crystals
Diffraction gratings
Finite-difference time-domain (FDTD) methods
Fluorescence labeling
Gratings (spectra)
High throughput
Label-free biosensors
Laser interference lithography (LIL)
Lithography
Mass production
nanomaterials
Nanostructure
Optical resonant sensors
Refractive index
Refractivity
wavelengths
White light
title Fabrication of broad area optical nanostructures for high throughput chemical sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20broad%20area%20optical%20nanostructures%20for%20high%20throughput%20chemical%20sensing&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Rodr%C3%ADguez-Franco,%20P.&rft.date=2013-10-01&rft.volume=187&rft.spage=356&rft.epage=362&rft.pages=356-362&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2012.12.039&rft_dat=%3Cproquest_cross%3E1786167154%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-c4e8237b5ce1774f4e81450eea09891bd7ba96fc914b7bbdfbc710036ff30f643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786167154&rft_id=info:pmid/&rfr_iscdi=true