Loading…
Rigidity and non-recurrence along sequences
We study two properties of a finite measure-preserving dynamical system and a given sequence $({n}_{m} )$ of positive integers, namely rigidity and non-recurrence. Our goal is to find conditions on the sequence which ensure that it is, or is not, a rigid sequence or a non-recurrent sequence for some...
Saved in:
Published in: | Ergodic theory and dynamical systems 2014-10, Vol.34 (5), p.1464-1502 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study two properties of a finite measure-preserving dynamical system and a given sequence $({n}_{m} )$ of positive integers, namely rigidity and non-recurrence. Our goal is to find conditions on the sequence which ensure that it is, or is not, a rigid sequence or a non-recurrent sequence for some weakly mixing system or more generally for some ergodic system. The main focus is on weakly mixing systems. For example, we show that for any integer $a\geq 2$ the sequence ${n}_{m} = {a}^{m} $ is a sequence of rigidity for some weakly mixing system. We show the same for the sequence of denominators of the convergents in the continued fraction expansion of any irrational $\alpha $. We also consider the stronger property of IP-rigidity. We show that if $({n}_{m} )$ grows fast enough then there is a weakly mixing system which is IP-rigid along $({n}_{m} )$ and non-recurrent along $({n}_{m} + 1)$. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2013.5 |