Loading…
Fault-tolerant conversion between the Steane and Reed-Muller quantum codes
Steane's 7-qubit quantum error-correcting code admits a set of fault-tolerant gates that generate the Clifford group, which in itself is not universal for quantum computation. The 15-qubit Reed-Muller code also does not admit a universal fault-tolerant gate set but possesses fault-tolerant T an...
Saved in:
Published in: | Physical review letters 2014-08, Vol.113 (8), p.080501-080501, Article 080501 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Steane's 7-qubit quantum error-correcting code admits a set of fault-tolerant gates that generate the Clifford group, which in itself is not universal for quantum computation. The 15-qubit Reed-Muller code also does not admit a universal fault-tolerant gate set but possesses fault-tolerant T and control-control-Z gates. Combined with the Clifford group, either of these two gates generates a universal set. Here, we combine these two features by demonstrating how to fault-tolerantly convert between these two codes, providing a new method to realize universal fault-tolerant quantum computation. One interpretation of our result is that both codes correspond to the same subsystem code in different gauges. Our scheme extends to the entire family of quantum Reed-Muller codes. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.113.080501 |