Loading…

Evidence in Escherichia coli that N3-Methyladenine Lesions Induced by a Minor Groove Binding Methyl Sulfonate Ester Can Be Processed by both Base and Nucleotide Excision Repair

It has been previously reported that a neutral DNA equilibrium binding agent based on an N-methylpyrrolecarboxamide dipeptide (lex) and modified with an O-methyl sulfonate ester functionality (MeOSO2-lex) selectively affords N3-methyladenine lesions. To study the interaction of the neutral lex dipep...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2001-02, Vol.40 (6), p.1796-1803
Main Authors: Shah, Dharini, Kelly, Jack, Zhang, Yi, Dande, Prasad, Martinez, Juan, Ortiz, Gretchen, Fronza, Gilberto, Tran, Huy, Soto, Ana Maria, Marky, Luis, Gold, Barry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been previously reported that a neutral DNA equilibrium binding agent based on an N-methylpyrrolecarboxamide dipeptide (lex) and modified with an O-methyl sulfonate ester functionality (MeOSO2-lex) selectively affords N3-methyladenine lesions. To study the interaction of the neutral lex dipeptide with calf thymus DNA, we have prepared stable, nonmethylating sulfone analogues of MeOSO2-lex that are neutral and cationic. Thermodynamic studies show that both the neutral and monocationic sulfone compounds bind to DNA with K b's of 105 in primarily entropy-driven reactions. To determine how the cytotoxic N3-methyladenine adduct generated from MeOSO2-lex is repaired in E. coli, MeOSO2-lex was tested for toxicity in wild-type E. coli and in mutant strains defective in base excision repair (tag and/or alkA glycosylases or apn endonuclease), nucleotide excision repair (uvrA), and both base and nucleotide excision repair (tag/alkA/uvrA). The results clearly demonstrate the cellular toxicity of the N3-methyladenine lesion, and the protective role of base excision glycosylase proteins. A novel finding is that in the absence of functional base excision glycosylases, nucleotide excision repair can also protect cells from this cytotoxic minor groove lesion. Interaction between base and nucleotide excision repair systems is also seen in the protection of cells treated with cis-diamminedichloroplatinum(II) but not with anti-(±)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi0024658