Loading…
Image-guided robotic delivery system for precise placement of therapeutic agents
The effectiveness of conventional solid tumor treatment is limited by the systemic toxicity and lack of specificity of chemotherapeutic agents. Present treatment modalities are frequently insufficient to eliminate competent cancer cells without exceeding the limits of toxicity to normal tissue. The...
Saved in:
Published in: | Journal of controlled release 2001-07, Vol.74 (1), p.363-368 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effectiveness of conventional solid tumor treatment is limited by the systemic toxicity and lack of specificity of chemotherapeutic agents. Present treatment modalities are frequently insufficient to eliminate competent cancer cells without exceeding the limits of toxicity to normal tissue. The coming generation of cancer therapeutics depends on the precise targeting and sustained release of antitumor agents to overcome these limitations. We are developing an image-guided, robotic system for precise intratumoral placement of anticancer drugs and sustained release devices to advance this new treatment paradigm. The robotic system will use intraoperatively obtained computed tomographic (CT) images from a mobile CT scanner for guidance. The concept is to track patient anatomy and localize instruments using currently available optical tracking technology. Tracking will also be used to register patient anatomy with the images. The physician can then use the registered image to select an appropriate tumor target and entry location and to plan the instrument path. This path will then be transmitted to the robot, which orients and drives the instrument to the desired target under physician control. Achievement of the target is confirmed via intraoperative CT. This system will provide instrument guidance that is precise, direct, and controllable. Error due to poor target visualization and hand unsteadiness should be reduced greatly. The basic components of the system (robot, mobile CT, tracking) have been demonstrated in our laboratory, and the integration of the components is in progress. In future work, we plan to fuse preoperative PET imaging with intraoperative CT to allow functional as well as anatomic image guidance. |
---|---|
ISSN: | 0168-3659 1873-4995 |
DOI: | 10.1016/S0168-3659(01)00348-0 |