Loading…

AtKC1 and CIPK23 Synergistically Modulate AKT1-Mediated Low-Potassium Stress Responses in Arabidopsis

In Arabidopsis (Arabidopsis thaliana), the Shaker K⁺ channel AKT1 conducts K⁺ uptake in root cells, and its activity is regulated by CBL1/9-CIPK23 complexes as well as by the AtKC1 channel subunit. CIPK23 and AtKC1 are both involved in the AKT1-mediated low-K⁺ (LK) response; however, the relationshi...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2016-04, Vol.170 (4), p.2264-2277
Main Authors: Wang, Xue-Ping, Chen, Li-Mei, Liu, Wen-Xin, Shen, Li-Ke, Wang, Feng-Liu, Zhou, Yuan, Zhang, Ziding, Wu, Wei-Hua, Wang, Yi
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Arabidopsis (Arabidopsis thaliana), the Shaker K⁺ channel AKT1 conducts K⁺ uptake in root cells, and its activity is regulated by CBL1/9-CIPK23 complexes as well as by the AtKC1 channel subunit. CIPK23 and AtKC1 are both involved in the AKT1-mediated low-K⁺ (LK) response; however, the relationship between them remains unclear. In this study, we screened suppressors of low-K⁺ sensitive [lks1 (cipk23)] and isolated the suppressor of lks1 (sls1) mutant, which suppressed the leaf chlorosis phenotype of lks1 under LK conditions. Map-based cloning revealed a point mutation in AtKC1 of sls1 that led to an amino acid substitution (G322D) in the S6 region of AtKC1. The G322D substitution generated a gain-of-function mutation, AtKC1D, that enhanced K⁺ uptake capacity and LK tolerance in Arabidopsis. Structural prediction suggested that glycine-322 is highly conserved in K⁺ channels and may function as the gating hinge of plant Shaker K⁺ channels. Electrophysiological analyses revealed that, compared with wild-type AtKC1, AtKC1D showed enhanced inhibition of AKT1 activity and strongly reduced K⁺ leakage through AKT1 under LK conditions. In addition, phenotype analysis revealed distinct phenotypes of lks1 and atkc1 mutants in different LK assays, but the lks1 atkc1 double mutant always showed a LK-sensitive phenotype similar to that of akt1. This study revealed a link between CIPK-mediated activation and AtKC1-mediated modification in AKT1 regulation. CIPK23 and AtKC1 exhibit distinct effects; however, they act synergistically and balance K⁺ uptake/leakage to modulate AKT1-mediated LK responses in Arabidopsis.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.15.01493