Loading…

Mechanical fragmentation of corncob at different plant scales: Impact and mechanism on microstructure features and enzymatic hydrolysis

•Link of particle size to surface area, cellulose crystallinity and reducing-end.•Changes were not significant for corncob either at a plant scale or tissue scale.•Microstructure features of corncob at a cellular scale were significantly changed.•Glucose yield of corncob at a cellular scale increase...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2016-04, Vol.205, p.159-165
Main Authors: Ji, Guanya, Gao, Chongfeng, Xiao, Weihua, Han, Lujia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-b51e8e6ad92188283b1e0c0432e9fba4ece650f27ef80c18ef118bf54504ab33
cites cdi_FETCH-LOGICAL-c401t-b51e8e6ad92188283b1e0c0432e9fba4ece650f27ef80c18ef118bf54504ab33
container_end_page 165
container_issue
container_start_page 159
container_title Bioresource technology
container_volume 205
creator Ji, Guanya
Gao, Chongfeng
Xiao, Weihua
Han, Lujia
description •Link of particle size to surface area, cellulose crystallinity and reducing-end.•Changes were not significant for corncob either at a plant scale or tissue scale.•Microstructure features of corncob at a cellular scale were significantly changed.•Glucose yield of corncob at a cellular scale increased to 98.3%. In this work, corncob samples at different scales, i.e., plant scale (>1mm), tissue scale (500–100μm) and cellular scale (50–30μm), were produced to investigate the impact and mechanisms of different mechanical fragmentations on microstructure features and enzymatic hydrolysis. The results showed that the microstructure features and enzymatic hydrolysis of corncob samples, either at a plant scale or tissue scale, did not change significantly. Conversely, corncob samples at a cellular scale exhibited some special properties, i.e., an increase in the special surface area with the inner mesopores and macropores exposed to the surface; breakage of crystalline cellulose and linkages in polysaccharides; and a higher proportion of polysaccharides on the surface, which significantly enhanced enzymatic digestibility resulting in a 98.3% conversion yield of cellulose to glucose which is the highest conversion ever reported. In conclusion, mechanical fragmentation at the cellular scale is an effective pretreatment for corncob.
doi_str_mv 10.1016/j.biortech.2016.01.029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790961477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852416000420</els_id><sourcerecordid>1790961477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-b51e8e6ad92188283b1e0c0432e9fba4ece650f27ef80c18ef118bf54504ab33</originalsourceid><addsrcrecordid>eNqNkctuFDEQRS0EIkPgFyIv2XRT5X65WYEiHpGC2GRvud1l4lG7PdhupOEH-G08TMIWNi5ZdW5dVV3GrhBqBOzf7OvJhZjJ3Nei_GvAGsT4hO1QDk0lxqF_ynYw9lDJTrQX7EVKewBocBDP2YXopejHrtuxX1_KCL06oxduo_7mac06u7DyYLkJcTVh4jrz2VlLsTT5YdHlTUVA6S2_8QdtMtfrzP15UvK8qL0zMaQcN5O3SNySPtX0B6T159EXE8Pvj3MMyzG59JI9s3pJ9OqhXrK7jx_urj9Xt18_3Vy_v61MC5irqUOS1Ot5FCilkM2EBAbaRtBoJ92Sob4DKwayEgxKsohysl3bQaunprlkr89jDzF83yhl5V0ytJSdKGxJ4TCWo2E7DP-B9h2ClAgF7c_oaecUyapDdF7Ho0JQp7jUXj3GpU5xKUBV4irCqwePbfI0_5U95lOAd2eAyk1-OIoqGUerodlFMlnNwf3L4zeynK0P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765108810</pqid></control><display><type>article</type><title>Mechanical fragmentation of corncob at different plant scales: Impact and mechanism on microstructure features and enzymatic hydrolysis</title><source>ScienceDirect Freedom Collection</source><creator>Ji, Guanya ; Gao, Chongfeng ; Xiao, Weihua ; Han, Lujia</creator><creatorcontrib>Ji, Guanya ; Gao, Chongfeng ; Xiao, Weihua ; Han, Lujia</creatorcontrib><description>•Link of particle size to surface area, cellulose crystallinity and reducing-end.•Changes were not significant for corncob either at a plant scale or tissue scale.•Microstructure features of corncob at a cellular scale were significantly changed.•Glucose yield of corncob at a cellular scale increased to 98.3%. In this work, corncob samples at different scales, i.e., plant scale (&gt;1mm), tissue scale (500–100μm) and cellular scale (50–30μm), were produced to investigate the impact and mechanisms of different mechanical fragmentations on microstructure features and enzymatic hydrolysis. The results showed that the microstructure features and enzymatic hydrolysis of corncob samples, either at a plant scale or tissue scale, did not change significantly. Conversely, corncob samples at a cellular scale exhibited some special properties, i.e., an increase in the special surface area with the inner mesopores and macropores exposed to the surface; breakage of crystalline cellulose and linkages in polysaccharides; and a higher proportion of polysaccharides on the surface, which significantly enhanced enzymatic digestibility resulting in a 98.3% conversion yield of cellulose to glucose which is the highest conversion ever reported. In conclusion, mechanical fragmentation at the cellular scale is an effective pretreatment for corncob.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2016.01.029</identifier><identifier>PMID: 26826955</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biotechnology - methods ; Cellulases - chemistry ; Cellulases - metabolism ; Cellulose - chemistry ; Cellulose - metabolism ; Corncob ; Different plant scales ; Enzymatic hydrolysis ; Glucose - chemistry ; Glucose - metabolism ; Hydrolysis ; Mechanical fragmentation ; Microscopy, Electron, Scanning ; Microstructure features ; Particle Size ; Polysaccharides - chemistry ; Spectroscopy, Fourier Transform Infrared ; Surface Properties ; X-Ray Diffraction ; Zea mays - chemistry ; Zea mays - ultrastructure</subject><ispartof>Bioresource technology, 2016-04, Vol.205, p.159-165</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-b51e8e6ad92188283b1e0c0432e9fba4ece650f27ef80c18ef118bf54504ab33</citedby><cites>FETCH-LOGICAL-c401t-b51e8e6ad92188283b1e0c0432e9fba4ece650f27ef80c18ef118bf54504ab33</cites><orcidid>0000-0001-6292-1145 ; 0000-0002-1159-8074 ; 0000-0002-2955-6307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26826955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ji, Guanya</creatorcontrib><creatorcontrib>Gao, Chongfeng</creatorcontrib><creatorcontrib>Xiao, Weihua</creatorcontrib><creatorcontrib>Han, Lujia</creatorcontrib><title>Mechanical fragmentation of corncob at different plant scales: Impact and mechanism on microstructure features and enzymatic hydrolysis</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•Link of particle size to surface area, cellulose crystallinity and reducing-end.•Changes were not significant for corncob either at a plant scale or tissue scale.•Microstructure features of corncob at a cellular scale were significantly changed.•Glucose yield of corncob at a cellular scale increased to 98.3%. In this work, corncob samples at different scales, i.e., plant scale (&gt;1mm), tissue scale (500–100μm) and cellular scale (50–30μm), were produced to investigate the impact and mechanisms of different mechanical fragmentations on microstructure features and enzymatic hydrolysis. The results showed that the microstructure features and enzymatic hydrolysis of corncob samples, either at a plant scale or tissue scale, did not change significantly. Conversely, corncob samples at a cellular scale exhibited some special properties, i.e., an increase in the special surface area with the inner mesopores and macropores exposed to the surface; breakage of crystalline cellulose and linkages in polysaccharides; and a higher proportion of polysaccharides on the surface, which significantly enhanced enzymatic digestibility resulting in a 98.3% conversion yield of cellulose to glucose which is the highest conversion ever reported. In conclusion, mechanical fragmentation at the cellular scale is an effective pretreatment for corncob.</description><subject>Biotechnology - methods</subject><subject>Cellulases - chemistry</subject><subject>Cellulases - metabolism</subject><subject>Cellulose - chemistry</subject><subject>Cellulose - metabolism</subject><subject>Corncob</subject><subject>Different plant scales</subject><subject>Enzymatic hydrolysis</subject><subject>Glucose - chemistry</subject><subject>Glucose - metabolism</subject><subject>Hydrolysis</subject><subject>Mechanical fragmentation</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microstructure features</subject><subject>Particle Size</subject><subject>Polysaccharides - chemistry</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><subject>X-Ray Diffraction</subject><subject>Zea mays - chemistry</subject><subject>Zea mays - ultrastructure</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctuFDEQRS0EIkPgFyIv2XRT5X65WYEiHpGC2GRvud1l4lG7PdhupOEH-G08TMIWNi5ZdW5dVV3GrhBqBOzf7OvJhZjJ3Nei_GvAGsT4hO1QDk0lxqF_ynYw9lDJTrQX7EVKewBocBDP2YXopejHrtuxX1_KCL06oxduo_7mac06u7DyYLkJcTVh4jrz2VlLsTT5YdHlTUVA6S2_8QdtMtfrzP15UvK8qL0zMaQcN5O3SNySPtX0B6T159EXE8Pvj3MMyzG59JI9s3pJ9OqhXrK7jx_urj9Xt18_3Vy_v61MC5irqUOS1Ot5FCilkM2EBAbaRtBoJ92Sob4DKwayEgxKsohysl3bQaunprlkr89jDzF83yhl5V0ytJSdKGxJ4TCWo2E7DP-B9h2ClAgF7c_oaecUyapDdF7Ho0JQp7jUXj3GpU5xKUBV4irCqwePbfI0_5U95lOAd2eAyk1-OIoqGUerodlFMlnNwf3L4zeynK0P</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Ji, Guanya</creator><creator>Gao, Chongfeng</creator><creator>Xiao, Weihua</creator><creator>Han, Lujia</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6292-1145</orcidid><orcidid>https://orcid.org/0000-0002-1159-8074</orcidid><orcidid>https://orcid.org/0000-0002-2955-6307</orcidid></search><sort><creationdate>201604</creationdate><title>Mechanical fragmentation of corncob at different plant scales: Impact and mechanism on microstructure features and enzymatic hydrolysis</title><author>Ji, Guanya ; Gao, Chongfeng ; Xiao, Weihua ; Han, Lujia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-b51e8e6ad92188283b1e0c0432e9fba4ece650f27ef80c18ef118bf54504ab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biotechnology - methods</topic><topic>Cellulases - chemistry</topic><topic>Cellulases - metabolism</topic><topic>Cellulose - chemistry</topic><topic>Cellulose - metabolism</topic><topic>Corncob</topic><topic>Different plant scales</topic><topic>Enzymatic hydrolysis</topic><topic>Glucose - chemistry</topic><topic>Glucose - metabolism</topic><topic>Hydrolysis</topic><topic>Mechanical fragmentation</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microstructure features</topic><topic>Particle Size</topic><topic>Polysaccharides - chemistry</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><topic>X-Ray Diffraction</topic><topic>Zea mays - chemistry</topic><topic>Zea mays - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Guanya</creatorcontrib><creatorcontrib>Gao, Chongfeng</creatorcontrib><creatorcontrib>Xiao, Weihua</creatorcontrib><creatorcontrib>Han, Lujia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Guanya</au><au>Gao, Chongfeng</au><au>Xiao, Weihua</au><au>Han, Lujia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical fragmentation of corncob at different plant scales: Impact and mechanism on microstructure features and enzymatic hydrolysis</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2016-04</date><risdate>2016</risdate><volume>205</volume><spage>159</spage><epage>165</epage><pages>159-165</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•Link of particle size to surface area, cellulose crystallinity and reducing-end.•Changes were not significant for corncob either at a plant scale or tissue scale.•Microstructure features of corncob at a cellular scale were significantly changed.•Glucose yield of corncob at a cellular scale increased to 98.3%. In this work, corncob samples at different scales, i.e., plant scale (&gt;1mm), tissue scale (500–100μm) and cellular scale (50–30μm), were produced to investigate the impact and mechanisms of different mechanical fragmentations on microstructure features and enzymatic hydrolysis. The results showed that the microstructure features and enzymatic hydrolysis of corncob samples, either at a plant scale or tissue scale, did not change significantly. Conversely, corncob samples at a cellular scale exhibited some special properties, i.e., an increase in the special surface area with the inner mesopores and macropores exposed to the surface; breakage of crystalline cellulose and linkages in polysaccharides; and a higher proportion of polysaccharides on the surface, which significantly enhanced enzymatic digestibility resulting in a 98.3% conversion yield of cellulose to glucose which is the highest conversion ever reported. In conclusion, mechanical fragmentation at the cellular scale is an effective pretreatment for corncob.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26826955</pmid><doi>10.1016/j.biortech.2016.01.029</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6292-1145</orcidid><orcidid>https://orcid.org/0000-0002-1159-8074</orcidid><orcidid>https://orcid.org/0000-0002-2955-6307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2016-04, Vol.205, p.159-165
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1790961477
source ScienceDirect Freedom Collection
subjects Biotechnology - methods
Cellulases - chemistry
Cellulases - metabolism
Cellulose - chemistry
Cellulose - metabolism
Corncob
Different plant scales
Enzymatic hydrolysis
Glucose - chemistry
Glucose - metabolism
Hydrolysis
Mechanical fragmentation
Microscopy, Electron, Scanning
Microstructure features
Particle Size
Polysaccharides - chemistry
Spectroscopy, Fourier Transform Infrared
Surface Properties
X-Ray Diffraction
Zea mays - chemistry
Zea mays - ultrastructure
title Mechanical fragmentation of corncob at different plant scales: Impact and mechanism on microstructure features and enzymatic hydrolysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20fragmentation%20of%20corncob%20at%20different%20plant%20scales:%20Impact%20and%20mechanism%20on%20microstructure%20features%20and%20enzymatic%20hydrolysis&rft.jtitle=Bioresource%20technology&rft.au=Ji,%20Guanya&rft.date=2016-04&rft.volume=205&rft.spage=159&rft.epage=165&rft.pages=159-165&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2016.01.029&rft_dat=%3Cproquest_cross%3E1790961477%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-b51e8e6ad92188283b1e0c0432e9fba4ece650f27ef80c18ef118bf54504ab33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1765108810&rft_id=info:pmid/26826955&rfr_iscdi=true