Loading…
On the steepest descent algorithm for quadratic functions
The steepest descent algorithm with exact line searches (Cauchy algorithm) is inefficient, generating oscillating step lengths and a sequence of points converging to the span of the eigenvectors associated with the extreme eigenvalues. The performance becomes very good if a short step is taken at ev...
Saved in:
Published in: | Computational optimization and applications 2016-03, Vol.63 (2), p.523-542 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The steepest descent algorithm with exact line searches (Cauchy algorithm) is inefficient, generating oscillating step lengths and a sequence of points converging to the span of the eigenvectors associated with the extreme eigenvalues. The performance becomes very good if a short step is taken at every (say) ten iterations. We show a new method for estimating short steps, and propose a method alternating Cauchy and short steps. Finally, we use the roots of a certain Chebyshev polynomial to further accelerate the methods. |
---|---|
ISSN: | 0926-6003 1573-2894 |
DOI: | 10.1007/s10589-015-9775-z |