Loading…

Molecular-dynamics simulations of the nanoscale Taylor test under extreme loading conditions

A series of molecular-dynamics simulations of the classic Taylor impact test is performed by using a flat-ended monocrystalline nanoscale projectile made of the Lennard-Jones two-dimensional solid. The nanoprojectile striking velocities range from 0.75 to 7 km/s. These atomistic simulations offer in...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics and mechanics of solids 2016-03, Vol.21 (3), p.326-338
Main Author: Mastilovic, Sreten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A series of molecular-dynamics simulations of the classic Taylor impact test is performed by using a flat-ended monocrystalline nanoscale projectile made of the Lennard-Jones two-dimensional solid. The nanoprojectile striking velocities range from 0.75 to 7 km/s. These atomistic simulations offer insight into nature of fragment distributions and evolution of state parameters. According to the simulation results, the cumulative distribution of fragment sizes in the course of this non-homogeneous fragmentation process for hypervelocity impacts appears to be well represented by the bimodal-exponential distribution commonly observed during high-energy uniform fragmentation events. For more moderate impact velocities, the cumulative distribution of fragment sizes, in addition to the bimodal-exponential part, exhibits a large-fragment tail. Temporal evolutions on instantaneous kinetic temperature, stress and strain invariants are presented and discussed. Scaling relations between temperature/temperature rate and kinematic rates of deformation are suggested.
ISSN:1081-2865
1741-3028
DOI:10.1177/1081286514522146