Loading…
Robust thermal control for CMOS-based lab-on-chip systems
The need for precise temperature control at small scales has provided a formidable challenge to the lab-on-chip community. It requires, at once, good thermal conductivity for high speed operation, good thermal isolation for low power consumption and the ability to have small (mm-scale) thermally ind...
Saved in:
Published in: | Journal of micromechanics and microengineering 2015-07, Vol.25 (7), p.75005-13 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The need for precise temperature control at small scales has provided a formidable challenge to the lab-on-chip community. It requires, at once, good thermal conductivity for high speed operation, good thermal isolation for low power consumption and the ability to have small (mm-scale) thermally independent regions on the same substrate. Most importantly, and, in addition to these conflicting requirements, there is a need to accurately measure the temperature of the active region without the need for device-to-device calibrations. We have developed and tested a design that enables thermal control of lab-on-chip devices atop silicon substrates in a way that could be integrated with the standard methods of mass-manufacture used in the electronics industry (i.e. CMOS). This is a significant step towards a single-chip lab-on-chip solution, one in which the microfluidics, high voltage electronics, optoelectronics, instrumentation electronics, and the world-chip interface are all integrated on a single substrate with multiple, independent, thermally-controlled regions based on active heating and passive cooling. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/25/7/075005 |