Loading…

On the Bernoulli automorphism of reversible linear cellular automata

This investigation studies the ergodic properties of reversible linear cellular automata over Zm for m∈N. We show that a reversible linear cellular automaton is either a Bernoulli automorphism or non-ergodic. This gives an affirmative answer to an open problem proposed by Pivato [20] for the case of...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences 2016-06, Vol.345, p.217-225
Main Authors: Chang, Chih-Hung, Chang, Huilan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This investigation studies the ergodic properties of reversible linear cellular automata over Zm for m∈N. We show that a reversible linear cellular automaton is either a Bernoulli automorphism or non-ergodic. This gives an affirmative answer to an open problem proposed by Pivato [20] for the case of reversible linear cellular automata.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2016.01.062