Loading…

Comparison of reactant and analyte ions for 63Nickel, corona discharge, and secondary electrospray ionization sources with ion mobility-mass spectrometry

63Nickel radioactive ionization (63Ni) is the most common and widely used ion source for ion mobility spectrometry (IMS). Regulatory, financial, and operational concerns with this source have promoted recent development of non-radioactive sources, such as corona discharge ionization (CD), for stand-...

Full description

Saved in:
Bibliographic Details
Published in:Talanta (Oxford) 2013-03, Vol.107, p.225-232
Main Authors: Crawford, C.L., Hill, H.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:63Nickel radioactive ionization (63Ni) is the most common and widely used ion source for ion mobility spectrometry (IMS). Regulatory, financial, and operational concerns with this source have promoted recent development of non-radioactive sources, such as corona discharge ionization (CD), for stand-alone IMS systems. However, there has been no comparison of the negative ion species produced by all three sources in the literature. This study compares the negative reactant and analyte ions produced by three sources on an ion mobility-mass spectrometer: conventional 63Ni, CD, and secondary electrospray ionization (SESI). Results showed that 63Ni and SESI produced the same reactant ion species while CD produced only the nitrate monomer and dimer ions. The analyte ions produced by each ion source were the same except for the CD source which produced a different ion species for the explosive RDX than either the 63Ni or SESI source. Accurate and reproducible reduced mobility (K0) values, including several values reported here for the first time, were found for each explosive with each ion source. Overall, the SESI source most closely reproduced the reactant ion species and analyte ion species profiles for 63Ni. This source may serve as a non-radioactive, robust, and flexible alternative for 63Ni. ► First comparison of the CD, SESI, and 63Ni ionization sources’ reactant ion chemistry. ► First comparison of the CD, SESI, and 63Ni ionization sources’ analyte ion chemistry. ► Previously unreported mass-identified, K0 values for ion species produced by explosives.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2013.01.009