Loading…
Improving the accuracy of long-term travel time prediction using heterogeneous ensembles
This paper is about long-term travel time prediction in public transportation. However, it can be useful for a wider area of applications. It follows a heterogeneous ensemble approach with dynamic selection. A vast set of experiments with a pool of 128 tuples of algorithms and parameter sets (a&...
Saved in:
Published in: | Neurocomputing (Amsterdam) 2015-02, Vol.150, p.428-439 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is about long-term travel time prediction in public transportation. However, it can be useful for a wider area of applications. It follows a heterogeneous ensemble approach with dynamic selection. A vast set of experiments with a pool of 128 tuples of algorithms and parameter sets (a&ps) has been conducted for each of the six studied routes. Three different algorithms, namely, random forest, projection pursuit regression and support vector machines, were used. Then, ensembles of different sizes were obtained after a pruning step. The best approach to combine the outputs is also addressed. Finally, the best ensemble approach for each of the six routes is compared with the best individual a&ps. The results confirm that heterogeneous ensembles are adequate for long-term travel time prediction. Namely, they achieve both higher accuracy and robustness along time than state-of-the-art learners. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2014.08.072 |