Loading…
Fructose consumption induces hypomethylation of hepatic mitochondrial DNA in rats
Fructose may play a crucial role in the pathogenesis of metabolic syndrome (MetS). However, the pathogenic mechanism of the fructose-induced MetS has not yet been investigated fully. Recently, several reports have investigated the association between mitochondrial DNA (mtDNA) and MetS. We examined t...
Saved in:
Published in: | Life sciences (1973) 2016-03, Vol.149, p.146-152 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fructose may play a crucial role in the pathogenesis of metabolic syndrome (MetS). However, the pathogenic mechanism of the fructose-induced MetS has not yet been investigated fully. Recently, several reports have investigated the association between mitochondrial DNA (mtDNA) and MetS. We examined the effect of fructose-rich diets on mtDNA content, transcription, and epigenetic changes.
Four-week-old male Sprague-Dawley rats were offered a 20% fructose solution for 14weeks. We quantified mRNAs for hepatic mitochondrial genes and analyzed the mtDNA methylation (5-mC and 5-hmC) levels using ELISA kits.
Histological analysis revealed non-alcoholic fatty liver disease (NAFLD) in fructose-fed rats. Hepatic mtDNA content and transcription were higher in fructose-fed rats than in the control group. Global hypomethylation of mtDNA was also observed in fructose-fed rats.
We showed that fructose consumption stimulates hepatic mtDNA-encoded gene expression. This phenomenon might be due to epigenetic changes in mtDNA. Fructose-induced mitochondrial epigenetic changes appear to be a novel mechanism underlying the pathology of MetS and NAFLD. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2016.02.020 |