Loading…
Advances in the application of germline tandem repeat instability for in situ monitoring
Alterations in tandem repetitive DNA sequences such as minisatellite DNA and expanded simple tandem repeats (ESTRs) may provide useful biomarkers of induced germline effects. In this review, I describe the differences between ESTRs and minisatellites with respect to their structure and mutational me...
Saved in:
Published in: | Mutation Research-Reviews in Mutation Research 2004-03, Vol.566 (2), p.169-182 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alterations in tandem repetitive DNA sequences such as minisatellite DNA and expanded simple tandem repeats (ESTRs) may provide useful biomarkers of induced germline effects. In this review, I describe the differences between ESTRs and minisatellites with respect to their structure and mutational mechanisms, and discuss field applications measuring induced germline instability. It is evident that both types of loci have high rates of mutation that facilitate the measurement of induced mutation measured in relatively small numbers of samples following environmentally relevant exposures. Several research groups have used these loci to demonstrate a significant increase in germline mutation in humans and animals exposed to radioactive or chemical pollutants in their natural environment. Mutations are manifested as gains or losses in repeat units and are detected either by pedigree screening or by PCR amplification of sperm DNA. Mutations at both ESTRs and minisatellites appear to arise via indirect mechanisms rather than by direct damage to the repeat locus itself. Most interestingly, ESTR instability following radiation has been shown to be heritable and transmitted to subsequent generations. An understanding of the mechanisms involved in induced instability is required in order to begin to decipher the potential biological implications of increased germline tandem repeat mutation. Furthermore, relatively few studies have investigated the ability of different genotoxins to induce tandem repeat instability. Such laboratory-based experiments will be crucial in clarifying the particular environmental or occupational exposures that should be targeted for future studies and for isolating and subsequently identifying the putative mutagens in complex environmental matrices. |
---|---|
ISSN: | 1383-5742 1388-2139 |
DOI: | 10.1016/j.mrrev.2003.08.001 |