Loading…
Renal endothelial protein C receptor expression and shedding during diabetic nephropathy
Essentials Endothelial protein C receptor (EPCR) promotes diabetic nephropathy (DN) outcome improvement. Renal expression and shedding of EPCR were measured in diabetic patients with or without DN. Inhibition of metalloproteinase‐driven EPCR shedding restored glomerular endothelium phenotype. EPCR s...
Saved in:
Published in: | Journal of thrombosis and haemostasis 2016-06, Vol.14 (6), p.1171-1182 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Essentials
Endothelial protein C receptor (EPCR) promotes diabetic nephropathy (DN) outcome improvement.
Renal expression and shedding of EPCR were measured in diabetic patients with or without DN.
Inhibition of metalloproteinase‐driven EPCR shedding restored glomerular endothelium phenotype.
EPCR shedding through metalloproteinase ADAM17 contributes to the worsening of DN.
Summary
Background
Diabetic nephropathy (DN) represents the leading cause of end‐stage renal disease. The endothelial protein C receptor (EPCR) and its ligand (activated protein C) have been shown to ameliorate the phenotype of DN in mice. EPCR activity can be regulated by proteolytic cleavage involving ADAMs, yielding a soluble form of EPCR (sEPCR).
Objective
To characterize the renal expression and shedding of EPCR during DN.
Methods
EPCR levels were measured in plasma, urine and biopsy samples of diabetic patients with (n = 73) or without (n = 63) DN. ADAM‐induced cleavage of EPCR was investigated in vitro with a human glomerular endothelium cell line.
Results
DN patients showed higher plasma and urinary levels of sEPCR than diabetic controls (112.2 versus 135.2 ng mL−1 and 94.35 versus 140.6 ng mL−1, respectively). Accordingly, glomerular endothelial EPCR expression was markedly reduced in patients with DN, and this was associated with increased glomerular expression of ADAM‐17 and ADAM‐10. In vitro, EPCR shedding was induced by incubation of glomerular endothelium in high‐glucose medium, and this shedding was suppressed by ADAM‐17 inhibition or silencing, which led to improved vascular endothelial cadherin (VE‐cadherin) expression and reduced mRNA expression of transforming growth factor (TGF)‐β. In addition, EPCR silencing led to minor effects on VE‐cadherin but to a significant increase in TGF‐β mRNA expression.
Conclusion
Inhibition of ADAM‐driven glomerular EPCR shedding restored the endothelial phenotype of glomerular endothelium, whereas EPCR silencing led to enhanced expression of TGF‐β, a marker of endothelial–mesenchymal transition. These findings demonstrate that EPCR shedding driven by ADAMs contributes to the worsening of DN. |
---|---|
ISSN: | 1538-7933 1538-7836 1538-7836 |
DOI: | 10.1111/jth.13315 |