Loading…

Applying response surface methodology to assess the combined effect of process variables on the composition and octane number of reformat in the process of reducing aromatization activity in catalytic naphtha reforming

This study is aimed at investigating the interactive effect of reaction variables on the composition and octane number of reformat in catalytic naphtha reforming gasoline fuel. The relationship between aromatization activity and RON, with three reaction variables, namely temperature (480–510 °C), to...

Full description

Saved in:
Bibliographic Details
Published in:Reaction kinetics, mechanisms and catalysis mechanisms and catalysis, 2014-02, Vol.111 (1), p.89-106
Main Authors: Elfghi, Fawzi M., Amin, N. A. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study is aimed at investigating the interactive effect of reaction variables on the composition and octane number of reformat in catalytic naphtha reforming gasoline fuel. The relationship between aromatization activity and RON, with three reaction variables, namely temperature (480–510 °C), total pressure (10–30 bar) and space velocity LHSV (1.2–1.8 h −1 ) were presented as empirical mathematical models. Experiments were performed based on the central composite rotatable design and analyzed using response surface methodology (RSM) and canonical analysis. First, the equation models are used to predict RON and aromatization activity as responses. Second, the regression analysis of RON and aromatization activity equations is obtained from the output of these developed models. Finally, the RSM is used to optimize these regression empirical models. R 2  = 88.5 % for RON and 80.5 for the aromatization activity showed that RSM models fitted well with the observed data and considered to be accurate and available for predicting responses. The temperature and total pressure are the most effective variables as a linear ( X 1 , X 2 ) terms and have a significant role in the responses. Numerical results also revealed that the maximum predicted RON of 105 was attained at optimum reaction temperature of 515 °C, operating pressure of 17 bar and LHSV of 2.0 h −1 .
ISSN:1878-5190
1878-5204
DOI:10.1007/s11144-013-0624-8