Loading…

Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community

This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorgan...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2015-01, Vol.175, p.578-585
Main Authors: Cho, Dae-Hyun, Ramanan, Rishiram, Heo, Jina, Lee, Jimin, Kim, Byung-Hyuk, Oh, Hee-Mock, Kim, Hee-Sik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2014.10.159