Loading…

Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community

This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorgan...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2015-01, Vol.175, p.578-585
Main Authors: Cho, Dae-Hyun, Ramanan, Rishiram, Heo, Jina, Lee, Jimin, Kim, Byung-Hyuk, Oh, Hee-Mock, Kim, Hee-Sik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953
cites cdi_FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953
container_end_page 585
container_issue
container_start_page 578
container_title Bioresource technology
container_volume 175
creator Cho, Dae-Hyun
Ramanan, Rishiram
Heo, Jina
Lee, Jimin
Kim, Byung-Hyuk
Oh, Hee-Mock
Kim, Hee-Sik
description This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P
doi_str_mv 10.1016/j.biortech.2014.10.159
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800701929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651458436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953</originalsourceid><addsrcrecordid>eNqNkUtLw0AUhQdRbK3-hZKlm8Q775mllPqAghtduAqTyaRNyaNmEqH_3oltxZ2uLhy-c-_hHoTmGBIMWNxtk6xsu97ZTUIAs2TUuT5DU6wkjYmW4hxNQQuIFSdsgq683wIAxZJcognhjGslYYrel83GNLZs1lFd2q411dpUUdhdG--jXdfmg-3Lz7LfR9k-cs26bJzrRtz8MsSZsX2Qg9W2dT00gb9GF4WpvLs5zhl6e1i-Lp7i1cvj8-J-FVsqZR8Lx5XQmgnubCEIxYxllDuFSS4oY7kkWDooCiCU8oJhpTLIgiOn2GZEczpDt4e9IezH4Hyf1qW3rqpM49rBp1gBSMCa6L9RwTHjilHxD5RJCJlgRMUBDd_wvnNFuuvK2nT7FEM6lpVu01NZ6VjWt87HOPPjjSGrXf5jO7VDvwDfP5Jl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647002306</pqid></control><display><type>article</type><title>Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community</title><source>Elsevier</source><creator>Cho, Dae-Hyun ; Ramanan, Rishiram ; Heo, Jina ; Lee, Jimin ; Kim, Byung-Hyuk ; Oh, Hee-Mock ; Kim, Hee-Sik</creator><creatorcontrib>Cho, Dae-Hyun ; Ramanan, Rishiram ; Heo, Jina ; Lee, Jimin ; Kim, Byung-Hyuk ; Oh, Hee-Mock ; Kim, Hee-Sik</creatorcontrib><description>This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P&lt;0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2014.10.159</identifier><identifier>PMID: 25459870</identifier><language>eng</language><publisher>England</publisher><subject>Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Biomass ; Biotechnology ; Biotechnology - methods ; Carbon ; Carbon - metabolism ; Chlorella vulgaris ; Chlorella vulgaris - growth &amp; development ; Chlorella vulgaris - metabolism ; Chlorella vulgaris - microbiology ; Consortia ; Exchange ; Flocculation ; Lipid Metabolism ; Lipids ; Lipids - chemistry ; Microalgae - growth &amp; development ; Microalgae - metabolism ; Microalgae - microbiology ; Microbial Consortia - genetics ; Microbial Consortia - physiology ; Productivity ; Symbiosis</subject><ispartof>Bioresource technology, 2015-01, Vol.175, p.578-585</ispartof><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953</citedby><cites>FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25459870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Dae-Hyun</creatorcontrib><creatorcontrib>Ramanan, Rishiram</creatorcontrib><creatorcontrib>Heo, Jina</creatorcontrib><creatorcontrib>Lee, Jimin</creatorcontrib><creatorcontrib>Kim, Byung-Hyuk</creatorcontrib><creatorcontrib>Oh, Hee-Mock</creatorcontrib><creatorcontrib>Kim, Hee-Sik</creatorcontrib><title>Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P&lt;0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Chlorella vulgaris</subject><subject>Chlorella vulgaris - growth &amp; development</subject><subject>Chlorella vulgaris - metabolism</subject><subject>Chlorella vulgaris - microbiology</subject><subject>Consortia</subject><subject>Exchange</subject><subject>Flocculation</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Microalgae - growth &amp; development</subject><subject>Microalgae - metabolism</subject><subject>Microalgae - microbiology</subject><subject>Microbial Consortia - genetics</subject><subject>Microbial Consortia - physiology</subject><subject>Productivity</subject><subject>Symbiosis</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLw0AUhQdRbK3-hZKlm8Q775mllPqAghtduAqTyaRNyaNmEqH_3oltxZ2uLhy-c-_hHoTmGBIMWNxtk6xsu97ZTUIAs2TUuT5DU6wkjYmW4hxNQQuIFSdsgq683wIAxZJcognhjGslYYrel83GNLZs1lFd2q411dpUUdhdG--jXdfmg-3Lz7LfR9k-cs26bJzrRtz8MsSZsX2Qg9W2dT00gb9GF4WpvLs5zhl6e1i-Lp7i1cvj8-J-FVsqZR8Lx5XQmgnubCEIxYxllDuFSS4oY7kkWDooCiCU8oJhpTLIgiOn2GZEczpDt4e9IezH4Hyf1qW3rqpM49rBp1gBSMCa6L9RwTHjilHxD5RJCJlgRMUBDd_wvnNFuuvK2nT7FEM6lpVu01NZ6VjWt87HOPPjjSGrXf5jO7VDvwDfP5Jl</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Cho, Dae-Hyun</creator><creator>Ramanan, Rishiram</creator><creator>Heo, Jina</creator><creator>Lee, Jimin</creator><creator>Kim, Byung-Hyuk</creator><creator>Oh, Hee-Mock</creator><creator>Kim, Hee-Sik</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7SU</scope><scope>7TB</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community</title><author>Cho, Dae-Hyun ; Ramanan, Rishiram ; Heo, Jina ; Lee, Jimin ; Kim, Byung-Hyuk ; Oh, Hee-Mock ; Kim, Hee-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Chlorella vulgaris</topic><topic>Chlorella vulgaris - growth &amp; development</topic><topic>Chlorella vulgaris - metabolism</topic><topic>Chlorella vulgaris - microbiology</topic><topic>Consortia</topic><topic>Exchange</topic><topic>Flocculation</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Microalgae - growth &amp; development</topic><topic>Microalgae - metabolism</topic><topic>Microalgae - microbiology</topic><topic>Microbial Consortia - genetics</topic><topic>Microbial Consortia - physiology</topic><topic>Productivity</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Dae-Hyun</creatorcontrib><creatorcontrib>Ramanan, Rishiram</creatorcontrib><creatorcontrib>Heo, Jina</creatorcontrib><creatorcontrib>Lee, Jimin</creatorcontrib><creatorcontrib>Kim, Byung-Hyuk</creatorcontrib><creatorcontrib>Oh, Hee-Mock</creatorcontrib><creatorcontrib>Kim, Hee-Sik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Dae-Hyun</au><au>Ramanan, Rishiram</au><au>Heo, Jina</au><au>Lee, Jimin</au><au>Kim, Byung-Hyuk</au><au>Oh, Hee-Mock</au><au>Kim, Hee-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>175</volume><spage>578</spage><epage>585</epage><pages>578-585</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P&lt;0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.</abstract><cop>England</cop><pmid>25459870</pmid><doi>10.1016/j.biortech.2014.10.159</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2015-01, Vol.175, p.578-585
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1800701929
source Elsevier
subjects Bacteria
Bacteria - genetics
Bacteria - metabolism
Biomass
Biotechnology
Biotechnology - methods
Carbon
Carbon - metabolism
Chlorella vulgaris
Chlorella vulgaris - growth & development
Chlorella vulgaris - metabolism
Chlorella vulgaris - microbiology
Consortia
Exchange
Flocculation
Lipid Metabolism
Lipids
Lipids - chemistry
Microalgae - growth & development
Microalgae - metabolism
Microalgae - microbiology
Microbial Consortia - genetics
Microbial Consortia - physiology
Productivity
Symbiosis
title Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20microalgal%20biomass%20productivity%20by%20engineering%20a%20microalgal-bacterial%20community&rft.jtitle=Bioresource%20technology&rft.au=Cho,%20Dae-Hyun&rft.date=2015-01&rft.volume=175&rft.spage=578&rft.epage=585&rft.pages=578-585&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2014.10.159&rft_dat=%3Cproquest_cross%3E1651458436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1647002306&rft_id=info:pmid/25459870&rfr_iscdi=true