Loading…
Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community
This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorgan...
Saved in:
Published in: | Bioresource technology 2015-01, Vol.175, p.578-585 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953 |
container_end_page | 585 |
container_issue | |
container_start_page | 578 |
container_title | Bioresource technology |
container_volume | 175 |
creator | Cho, Dae-Hyun Ramanan, Rishiram Heo, Jina Lee, Jimin Kim, Byung-Hyuk Oh, Hee-Mock Kim, Hee-Sik |
description | This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P |
doi_str_mv | 10.1016/j.biortech.2014.10.159 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800701929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651458436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953</originalsourceid><addsrcrecordid>eNqNkUtLw0AUhQdRbK3-hZKlm8Q775mllPqAghtduAqTyaRNyaNmEqH_3oltxZ2uLhy-c-_hHoTmGBIMWNxtk6xsu97ZTUIAs2TUuT5DU6wkjYmW4hxNQQuIFSdsgq683wIAxZJcognhjGslYYrel83GNLZs1lFd2q411dpUUdhdG--jXdfmg-3Lz7LfR9k-cs26bJzrRtz8MsSZsX2Qg9W2dT00gb9GF4WpvLs5zhl6e1i-Lp7i1cvj8-J-FVsqZR8Lx5XQmgnubCEIxYxllDuFSS4oY7kkWDooCiCU8oJhpTLIgiOn2GZEczpDt4e9IezH4Hyf1qW3rqpM49rBp1gBSMCa6L9RwTHjilHxD5RJCJlgRMUBDd_wvnNFuuvK2nT7FEM6lpVu01NZ6VjWt87HOPPjjSGrXf5jO7VDvwDfP5Jl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647002306</pqid></control><display><type>article</type><title>Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community</title><source>Elsevier</source><creator>Cho, Dae-Hyun ; Ramanan, Rishiram ; Heo, Jina ; Lee, Jimin ; Kim, Byung-Hyuk ; Oh, Hee-Mock ; Kim, Hee-Sik</creator><creatorcontrib>Cho, Dae-Hyun ; Ramanan, Rishiram ; Heo, Jina ; Lee, Jimin ; Kim, Byung-Hyuk ; Oh, Hee-Mock ; Kim, Hee-Sik</creatorcontrib><description>This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2014.10.159</identifier><identifier>PMID: 25459870</identifier><language>eng</language><publisher>England</publisher><subject>Bacteria ; Bacteria - genetics ; Bacteria - metabolism ; Biomass ; Biotechnology ; Biotechnology - methods ; Carbon ; Carbon - metabolism ; Chlorella vulgaris ; Chlorella vulgaris - growth & development ; Chlorella vulgaris - metabolism ; Chlorella vulgaris - microbiology ; Consortia ; Exchange ; Flocculation ; Lipid Metabolism ; Lipids ; Lipids - chemistry ; Microalgae - growth & development ; Microalgae - metabolism ; Microalgae - microbiology ; Microbial Consortia - genetics ; Microbial Consortia - physiology ; Productivity ; Symbiosis</subject><ispartof>Bioresource technology, 2015-01, Vol.175, p.578-585</ispartof><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953</citedby><cites>FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25459870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cho, Dae-Hyun</creatorcontrib><creatorcontrib>Ramanan, Rishiram</creatorcontrib><creatorcontrib>Heo, Jina</creatorcontrib><creatorcontrib>Lee, Jimin</creatorcontrib><creatorcontrib>Kim, Byung-Hyuk</creatorcontrib><creatorcontrib>Oh, Hee-Mock</creatorcontrib><creatorcontrib>Kim, Hee-Sik</creatorcontrib><title>Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.</description><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Chlorella vulgaris</subject><subject>Chlorella vulgaris - growth & development</subject><subject>Chlorella vulgaris - metabolism</subject><subject>Chlorella vulgaris - microbiology</subject><subject>Consortia</subject><subject>Exchange</subject><subject>Flocculation</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Microalgae - growth & development</subject><subject>Microalgae - metabolism</subject><subject>Microalgae - microbiology</subject><subject>Microbial Consortia - genetics</subject><subject>Microbial Consortia - physiology</subject><subject>Productivity</subject><subject>Symbiosis</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLw0AUhQdRbK3-hZKlm8Q775mllPqAghtduAqTyaRNyaNmEqH_3oltxZ2uLhy-c-_hHoTmGBIMWNxtk6xsu97ZTUIAs2TUuT5DU6wkjYmW4hxNQQuIFSdsgq683wIAxZJcognhjGslYYrel83GNLZs1lFd2q411dpUUdhdG--jXdfmg-3Lz7LfR9k-cs26bJzrRtz8MsSZsX2Qg9W2dT00gb9GF4WpvLs5zhl6e1i-Lp7i1cvj8-J-FVsqZR8Lx5XQmgnubCEIxYxllDuFSS4oY7kkWDooCiCU8oJhpTLIgiOn2GZEczpDt4e9IezH4Hyf1qW3rqpM49rBp1gBSMCa6L9RwTHjilHxD5RJCJlgRMUBDd_wvnNFuuvK2nT7FEM6lpVu01NZ6VjWt87HOPPjjSGrXf5jO7VDvwDfP5Jl</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Cho, Dae-Hyun</creator><creator>Ramanan, Rishiram</creator><creator>Heo, Jina</creator><creator>Lee, Jimin</creator><creator>Kim, Byung-Hyuk</creator><creator>Oh, Hee-Mock</creator><creator>Kim, Hee-Sik</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7SU</scope><scope>7TB</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community</title><author>Cho, Dae-Hyun ; Ramanan, Rishiram ; Heo, Jina ; Lee, Jimin ; Kim, Byung-Hyuk ; Oh, Hee-Mock ; Kim, Hee-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Chlorella vulgaris</topic><topic>Chlorella vulgaris - growth & development</topic><topic>Chlorella vulgaris - metabolism</topic><topic>Chlorella vulgaris - microbiology</topic><topic>Consortia</topic><topic>Exchange</topic><topic>Flocculation</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Microalgae - growth & development</topic><topic>Microalgae - metabolism</topic><topic>Microalgae - microbiology</topic><topic>Microbial Consortia - genetics</topic><topic>Microbial Consortia - physiology</topic><topic>Productivity</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Dae-Hyun</creatorcontrib><creatorcontrib>Ramanan, Rishiram</creatorcontrib><creatorcontrib>Heo, Jina</creatorcontrib><creatorcontrib>Lee, Jimin</creatorcontrib><creatorcontrib>Kim, Byung-Hyuk</creatorcontrib><creatorcontrib>Oh, Hee-Mock</creatorcontrib><creatorcontrib>Kim, Hee-Sik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Dae-Hyun</au><au>Ramanan, Rishiram</au><au>Heo, Jina</au><au>Lee, Jimin</au><au>Kim, Byung-Hyuk</au><au>Oh, Hee-Mock</au><au>Kim, Hee-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>175</volume><spage>578</spage><epage>585</epage><pages>578-585</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>This study demonstrates that ecologically engineered bacterial consortium could enhance microalgal biomass and lipid productivities through carbon exchange. Phycosphere bacterial diversity analysis in xenic Chlorella vulgaris (XCV) confirmed the presence of growth enhancing and inhibiting microorganisms. Co-cultivation of axenic C. vulgaris (ACV) with four different growth enhancing bacteria revealed a symbiotic relationship with each bacterium. An artificial microalgal-bacterial consortium (AMBC) constituting these four bacteria and ACV showed that the bacterial consortium exerted a statistically significant (P<0.05) growth enhancement on ACV. Moreover, AMBC had superior flocculation efficiency, lipid content and quality. Studies on carbon exchange revealed that bacteria in AMBC might utilize fixed organic carbon released by microalgae, and in return, supply inorganic and low molecular weight (LMW) organic carbon influencing algal growth and metabolism. Such exchanges, although species specific, have enormous significance in carbon cycle and can be exploitated by microalgal biotechnology industry.</abstract><cop>England</cop><pmid>25459870</pmid><doi>10.1016/j.biortech.2014.10.159</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2015-01, Vol.175, p.578-585 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800701929 |
source | Elsevier |
subjects | Bacteria Bacteria - genetics Bacteria - metabolism Biomass Biotechnology Biotechnology - methods Carbon Carbon - metabolism Chlorella vulgaris Chlorella vulgaris - growth & development Chlorella vulgaris - metabolism Chlorella vulgaris - microbiology Consortia Exchange Flocculation Lipid Metabolism Lipids Lipids - chemistry Microalgae - growth & development Microalgae - metabolism Microalgae - microbiology Microbial Consortia - genetics Microbial Consortia - physiology Productivity Symbiosis |
title | Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20microalgal%20biomass%20productivity%20by%20engineering%20a%20microalgal-bacterial%20community&rft.jtitle=Bioresource%20technology&rft.au=Cho,%20Dae-Hyun&rft.date=2015-01&rft.volume=175&rft.spage=578&rft.epage=585&rft.pages=578-585&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2014.10.159&rft_dat=%3Cproquest_cross%3E1651458436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-6e58699465ecf623144b35e812d6344d7217e0ff02335f4188b0b869d31cb2953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1647002306&rft_id=info:pmid/25459870&rfr_iscdi=true |