Loading…
Shallow frontal deformation related to active continental subduction: structure and recent stresses in the westernmost Betic Cordillera
The westernmost Betic Cordillera front is located along the arcuate alpine belt formed by the interaction of the Eurasian‐African plate boundary and the Alboran continental domain in between. Although classical geological data suggest that the western Cordillera front is inactive, recent GPS data sh...
Saved in:
Published in: | Terra nova (Oxford, England) England), 2015-04, Vol.27 (2), p.114-121 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The westernmost Betic Cordillera front is located along the arcuate alpine belt formed by the interaction of the Eurasian‐African plate boundary and the Alboran continental domain in between. Although classical geological data suggest that the western Cordillera front is inactive, recent GPS data show a westward–north‐westward motion of up to 3.4 mm a−1 with respect to the foreland. In addition, the increasing thickness of Guadalquivir sedimentary infill towards the Cordillera, and the rectilinear character of the front formed by soft sediments, suggest that the Cordillera is still active. Large ENE–WSW‐oriented open folds detected in the field, seismic reflection profiles and new audiomagnetotellurics data are consistent with active deformation. Fracture analysis in Quaternary deposits evidences recent NW–SE horizontal compression. The GPS motion and maximum stress orientation may be due to north‐westward tectonic collision of the westernmost Betic Cordillera, accommodated at depth by active continental subduction of the Iberian lithosphere. |
---|---|
ISSN: | 0954-4879 1365-3121 |
DOI: | 10.1111/ter.12138 |