Loading…

Assessing the hierarchical structure of titanium implant surfaces

The physical texture of implant surfaces are known to be one important factor in creating a stable bone-implant interface. Simple roughness parameters (for e.g., Sa or Sz) are not entirely adequate when characterizing surfaces possessing hierarchical structure (macro, micro, and nano scales). The ai...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2016-08, Vol.104 (6), p.1083-1090
Main Authors: Matteson, Jesse L., Greenspan, David C., Tighe, Timothy B., Gilfoy, Nathan, Stapleton, Joshua J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The physical texture of implant surfaces are known to be one important factor in creating a stable bone-implant interface. Simple roughness parameters (for e.g., Sa or Sz) are not entirely adequate when characterizing surfaces possessing hierarchical structure (macro, micro, and nano scales). The aim of this study was to develop an analytical approach to quantify hierarchical surface structure of implant surfaces possessing nearly identical simple roughness. Titanium alloys with macro/micro texture (MM) and macro/micro/nano texture (MMN) were chosen as model surfaces to be evaluated. There was no statistical difference (p > 0.05) in either Sa (13.56 vs. 13.43 µm) or Sz (91.74 vs. 92.39 µm) for the MM and MMN surfaces, respectively. However, when advanced filtering algorithms were applied to these datasets, a statistical difference in roughness was found between MM (Sa = 0.54 µm) and MMN (Sa = 1.06 µm; p 
ISSN:1552-4973
1552-4981
DOI:10.1002/jbm.b.33462