Loading…

Study of paracetamol-containing pastilles produced by melt technology

The focus of this work was to apply melt technology for the formulation of a pastille containing paracetamol (PCT) in a solid dispersion with two sugar alcohols (xylitol and mannitol) and polyethylene glycol 6000 (PEG) as the carrier system components. Optimization of the pastillization was performe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2016-03, Vol.123 (3), p.2549-2559
Main Authors: Katona, Gábor, Sipos, Péter, Frohberg, Patrick, Ulrich, Joachim, Szabó-Révész, Piroska, Jójárt-Laczkovich, Orsolya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The focus of this work was to apply melt technology for the formulation of a pastille containing paracetamol (PCT) in a solid dispersion with two sugar alcohols (xylitol and mannitol) and polyethylene glycol 6000 (PEG) as the carrier system components. Optimization of the pastillization was performed both statistically by using the Box–Behnken design and experimentally by determining the phase diagrams. For the latter and recrystallization of the components, differential scanning calorimetry detection was utilized. The developed pastilles consisted of a eutectic mixture of xylitol (61.25 %) and mannitol (15.31 %) with PEG (7.81 %) as carrier system together with PCT (15.63 %). The components of the pastilles underwent recrystallization at different rates for 5 days. Transmission Raman spectroscopy revealed the homogeneous distribution of the PCT in the pastille. X-ray powder diffractometry showed that the recrystallization of the PCT resulted in its monoclinic form I, while dispersive Raman spectroscopy detected both the monoclinic and orthorhombic forms. The drop-melted pastilles displayed relatively high hardness, and the PCT dissolved within 15 min. It is concluded that pastillization can be achieved through melt technology and the structure and the technological parameters of the pastille are suitable for the development of lozenges as a solid dosage form for children therapy.
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-015-5223-7