Loading…

Soy protein hydrolysates fermentation: Effect of debittering and degradation of major soy allergens

The debittering effect of induced liquid state fermentation (Lactobacillus perolens, Rhizopus oryzae, and Actinomucor elegans) on different soy protein hydrolysates has been investigated. The hydrolytic action was monitored by SDS-PAGE and degree of hydrolysis analyses. Sensory perception using quan...

Full description

Saved in:
Bibliographic Details
Published in:Food science & technology 2016-09, Vol.71, p.202-212
Main Authors: Meinlschmidt, P., Schweiggert-Weisz, U., Eisner, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The debittering effect of induced liquid state fermentation (Lactobacillus perolens, Rhizopus oryzae, and Actinomucor elegans) on different soy protein hydrolysates has been investigated. The hydrolytic action was monitored by SDS-PAGE and degree of hydrolysis analyses. Sensory perception using quantitative descriptive analysis (QDA), employing multivariate statistical principal component analysis (PCA), techno-functional properties, and the microbial competitiveness (MALDI-TOF-MS) have been evaluated. SDS-PAGE profiles evidenced that the enzyme preparations degraded most of major soy allergens (β-conglycinin, glycinin), while subsequent fermentation did not further change the profiles. All strains investigated effectively reduced bitterness to a minimum of 0.7 on a 10-cm continuous scale (0 = no perception; 10 = strong perception) compared to non-fermented hydrolysates (2.8–8.0) and untreated soy protein isolate (2.8). Protein solubility, emulsifying and oil-binding capacity as well as foaming activity and gelation behaviour were enhanced depending on the protease used; subsequent fermentation further improved foaming stability and gelation concentration. PCA of descriptive sensory data revealed that fermentation apparently upgrade the organoleptic perception by effectively decreasing the bitter taste, simultaneously reducing the beany off-flavour of soy. Consequently, enzymatic hydrolysis combined with subsequent fermentation represents a promising method for the production of hypoallergenic soy hydrolysates with pleasant taste and great technofunctionality. •Effect of fermentation on reduction of bitter taste of soy protein hydrolysates was studied.•Major soy allergens (Gly m5 and Gly m6) were effectively degraded.•Bitterness of hydrolysates was significantly (p 
ISSN:0023-6438
1096-1127
DOI:10.1016/j.lwt.2016.03.026