Loading…
A General Method of Empirical Q-matrix Validation
In contrast to unidimensional item response models that postulate a single underlying proficiency, cognitive diagnosis models (CDMs) posit multiple, discrete skills or attributes, thus allowing CDMs to provide a finer-grained assessment of examinees’ test performance. A common component of CDMs for...
Saved in:
Published in: | Psychometrika 2016-06, Vol.81 (2), p.253-273 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In contrast to unidimensional item response models that postulate a single underlying proficiency, cognitive diagnosis models (CDMs) posit multiple, discrete skills or attributes, thus allowing CDMs to provide a finer-grained assessment of examinees’ test performance. A common component of CDMs for specifying the attributes required for each item is the Q-matrix. Although construction of Q-matrix is typically performed by domain experts, it nonetheless, to a large extent, remains a subjective process, and misspecifications in the Q-matrix, if left unchecked, can have important practical implications. To address this concern, this paper proposes a discrimination index that can be used with a wide class of CDM subsumed by the generalized deterministic input, noisy “and” gate model to empirically validate the Q-matrix specifications by identifying and replacing misspecified entries in the Q-matrix. The rationale for using the index as the basis for a proposed validation method is provided in the form of mathematical proofs to several relevant lemmas and a theorem. The feasibility of the proposed method was examined using simulated data generated under various conditions. The proposed method is illustrated using fraction subtraction data. |
---|---|
ISSN: | 0033-3123 1860-0980 |
DOI: | 10.1007/s11336-015-9467-8 |