Loading…

Bronchial epithelial cells induce alternatively activated dendritic cells dependent on glucocorticoid receptor signaling

Airway epithelial cells mount a tolerogenic microenvironment that reduces the proinflammatory potential of respiratory dendritic cells (DCs). We recently demonstrated that tracheal epithelial cells continuously secrete soluble mediators that affect the reactivity of local innate immune cells. Using...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2014-08, Vol.193 (3), p.1475-1484
Main Authors: Weitnauer, Michael, Schmidt, Lotte, Ng Kuet Leong, Nathalie, Muenchau, Stephanie, Lasitschka, Felix, Eckstein, Volker, Hübner, Sabine, Tuckermann, Jan, Dalpke, Alexander H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Airway epithelial cells mount a tolerogenic microenvironment that reduces the proinflammatory potential of respiratory dendritic cells (DCs). We recently demonstrated that tracheal epithelial cells continuously secrete soluble mediators that affect the reactivity of local innate immune cells. Using transcriptional profiling, we now observed that conditioning of DCs by tracheal epithelial cells regulated 98 genes under homeostatic conditions. Among the most upregulated genes were Ms4a8a and Ym1, marker genes of alternatively activated myeloid cells. Ex vivo analysis of respiratory DCs from nonchallenged mice confirmed a phenotype of alternative activation. Bioinformatic analysis showed an overrepresentation of hormone-nuclear receptors within the regulated genes, among which was the glucocorticoid receptor. In line with a role for glucocorticoids, pharmacological blockade as well as genetic manipulation of the glucocorticoid receptor within DCs inhibited Ms4a8a and Ym1 expression as well as MHC class II and CD86 regulation upon epithelial cell conditioning. Within epithelial cell-conditioned medium, low amounts of glucocorticoids were present. Further analysis showed that airway epithelial cells did not produce glucocorticoids de novo, yet were able to reactivate inactive dehydrocorticosterone enzymatically. The results show that airway epithelial cells regulate local immune responses, and this modulation involves local production of glucocorticoids and induction of an alternative activation phenotype in DCs.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1400446