Loading…

A case study of strong winds at an Arctic front

ABSTRACT Shallow arctic fronts frequently form at the edge of the arctic sea–ice by differential heating and cooling between sea and ice surfaces. The cooling is due to a net radiative loss over the ice, while the heating is mainly sensible as cold air flows from the ice to the warmer sea. North of...

Full description

Saved in:
Bibliographic Details
Published in:Tellus. Series A, Dynamic meteorology and oceanography Dynamic meteorology and oceanography, 1999-10, Vol.51 (5), p.865-879
Main Authors: GRØNAS, SIGBJØRN, SKEIE, PAUL
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3042-4e08ec7ae94f3ed31fe148705ca3613bd6c56a293d9f74cfc4e83d7ddb44eaba3
cites
container_end_page 879
container_issue 5
container_start_page 865
container_title Tellus. Series A, Dynamic meteorology and oceanography
container_volume 51
creator GRØNAS, SIGBJØRN
SKEIE, PAUL
description ABSTRACT Shallow arctic fronts frequently form at the edge of the arctic sea–ice by differential heating and cooling between sea and ice surfaces. The cooling is due to a net radiative loss over the ice, while the heating is mainly sensible as cold air flows from the ice to the warmer sea. North of the surface fronts, there is normally a low‐level jet with maximum easterly winds at the top of the boundary layer. It is shown from numerical simulations of a real case, that the low‐level jet can reach hurricane force when interacting with easterly winds connected to extratropical cyclones. Strong wind is found both at an arctic front over the sea some distance from the ice edge, and at a secondary front at the ice edge. When the flow is from the ice to the sea, the sensible heating of the boundary layer is almost in balance with the cold‐air advection. The convergence of the sensible heat flux amounts to a heating rate of more than 10 Kelvin per hour. The fronts are maintained by cross‐frontal vertical circulations.
doi_str_mv 10.1034/j.1600-0870.1999.00022.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18089644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18089644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3042-4e08ec7ae94f3ed31fe148705ca3613bd6c56a293d9f74cfc4e83d7ddb44eaba3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQQIMoWKv_IQfxtttkk2aTi7CUWoWCl3oOaTKRLdvdmmxp--_N2qJXTzPMvPngIYQpySlhfLLJqSAkI7JMBaVUTggpivx4hUa_jWs0IoUkmeBqeovuYtwkiCrBRmhSYWsi4Njv3Ql3PiWhaz_xoW5dxKbHpsVVsH1tsU-N_h7deNNEeLjEMfp4ma9mr9nyffE2q5aZZYQXGQciwZYGFPcMHKMeKE-fTK1hgrK1E3YqTKGYU77k1lsOkrnSuTXnYNaGjdHTee8udF97iL3e1tFC05gWun3UVBKpBOcJlGfQhi7GAF7vQr014aQp0YMhvdGDCD2I0IMh_WNIH9Po4-WGidY0PpjW1vFvXkkpJEvY8xk71A2c_r1er-bLakjZN1HheHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18089644</pqid></control><display><type>article</type><title>A case study of strong winds at an Arctic front</title><source>Taylor &amp; Francis Open Access</source><creator>GRØNAS, SIGBJØRN ; SKEIE, PAUL</creator><creatorcontrib>GRØNAS, SIGBJØRN ; SKEIE, PAUL</creatorcontrib><description>ABSTRACT Shallow arctic fronts frequently form at the edge of the arctic sea–ice by differential heating and cooling between sea and ice surfaces. The cooling is due to a net radiative loss over the ice, while the heating is mainly sensible as cold air flows from the ice to the warmer sea. North of the surface fronts, there is normally a low‐level jet with maximum easterly winds at the top of the boundary layer. It is shown from numerical simulations of a real case, that the low‐level jet can reach hurricane force when interacting with easterly winds connected to extratropical cyclones. Strong wind is found both at an arctic front over the sea some distance from the ice edge, and at a secondary front at the ice edge. When the flow is from the ice to the sea, the sensible heating of the boundary layer is almost in balance with the cold‐air advection. The convergence of the sensible heat flux amounts to a heating rate of more than 10 Kelvin per hour. The fronts are maintained by cross‐frontal vertical circulations.</description><identifier>ISSN: 0280-6495</identifier><identifier>EISSN: 1600-0870</identifier><identifier>DOI: 10.1034/j.1600-0870.1999.00022.x</identifier><identifier>CODEN: TSAOD8</identifier><language>eng</language><publisher>Copenhagen, DK: Munksgaard International Publishers</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; Winds and their effects</subject><ispartof>Tellus. Series A, Dynamic meteorology and oceanography, 1999-10, Vol.51 (5), p.865-879</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3042-4e08ec7ae94f3ed31fe148705ca3613bd6c56a293d9f74cfc4e83d7ddb44eaba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1988683$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GRØNAS, SIGBJØRN</creatorcontrib><creatorcontrib>SKEIE, PAUL</creatorcontrib><title>A case study of strong winds at an Arctic front</title><title>Tellus. Series A, Dynamic meteorology and oceanography</title><description>ABSTRACT Shallow arctic fronts frequently form at the edge of the arctic sea–ice by differential heating and cooling between sea and ice surfaces. The cooling is due to a net radiative loss over the ice, while the heating is mainly sensible as cold air flows from the ice to the warmer sea. North of the surface fronts, there is normally a low‐level jet with maximum easterly winds at the top of the boundary layer. It is shown from numerical simulations of a real case, that the low‐level jet can reach hurricane force when interacting with easterly winds connected to extratropical cyclones. Strong wind is found both at an arctic front over the sea some distance from the ice edge, and at a secondary front at the ice edge. When the flow is from the ice to the sea, the sensible heating of the boundary layer is almost in balance with the cold‐air advection. The convergence of the sensible heat flux amounts to a heating rate of more than 10 Kelvin per hour. The fronts are maintained by cross‐frontal vertical circulations.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Winds and their effects</subject><issn>0280-6495</issn><issn>1600-0870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQQIMoWKv_IQfxtttkk2aTi7CUWoWCl3oOaTKRLdvdmmxp--_N2qJXTzPMvPngIYQpySlhfLLJqSAkI7JMBaVUTggpivx4hUa_jWs0IoUkmeBqeovuYtwkiCrBRmhSYWsi4Njv3Ql3PiWhaz_xoW5dxKbHpsVVsH1tsU-N_h7deNNEeLjEMfp4ma9mr9nyffE2q5aZZYQXGQciwZYGFPcMHKMeKE-fTK1hgrK1E3YqTKGYU77k1lsOkrnSuTXnYNaGjdHTee8udF97iL3e1tFC05gWun3UVBKpBOcJlGfQhi7GAF7vQr014aQp0YMhvdGDCD2I0IMh_WNIH9Po4-WGidY0PpjW1vFvXkkpJEvY8xk71A2c_r1er-bLakjZN1HheHQ</recordid><startdate>199910</startdate><enddate>199910</enddate><creator>GRØNAS, SIGBJØRN</creator><creator>SKEIE, PAUL</creator><general>Munksgaard International Publishers</general><general>Blackwell</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>199910</creationdate><title>A case study of strong winds at an Arctic front</title><author>GRØNAS, SIGBJØRN ; SKEIE, PAUL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3042-4e08ec7ae94f3ed31fe148705ca3613bd6c56a293d9f74cfc4e83d7ddb44eaba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Winds and their effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GRØNAS, SIGBJØRN</creatorcontrib><creatorcontrib>SKEIE, PAUL</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Tellus. Series A, Dynamic meteorology and oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GRØNAS, SIGBJØRN</au><au>SKEIE, PAUL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A case study of strong winds at an Arctic front</atitle><jtitle>Tellus. Series A, Dynamic meteorology and oceanography</jtitle><date>1999-10</date><risdate>1999</risdate><volume>51</volume><issue>5</issue><spage>865</spage><epage>879</epage><pages>865-879</pages><issn>0280-6495</issn><eissn>1600-0870</eissn><coden>TSAOD8</coden><abstract>ABSTRACT Shallow arctic fronts frequently form at the edge of the arctic sea–ice by differential heating and cooling between sea and ice surfaces. The cooling is due to a net radiative loss over the ice, while the heating is mainly sensible as cold air flows from the ice to the warmer sea. North of the surface fronts, there is normally a low‐level jet with maximum easterly winds at the top of the boundary layer. It is shown from numerical simulations of a real case, that the low‐level jet can reach hurricane force when interacting with easterly winds connected to extratropical cyclones. Strong wind is found both at an arctic front over the sea some distance from the ice edge, and at a secondary front at the ice edge. When the flow is from the ice to the sea, the sensible heating of the boundary layer is almost in balance with the cold‐air advection. The convergence of the sensible heat flux amounts to a heating rate of more than 10 Kelvin per hour. The fronts are maintained by cross‐frontal vertical circulations.</abstract><cop>Copenhagen, DK</cop><pub>Munksgaard International Publishers</pub><doi>10.1034/j.1600-0870.1999.00022.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0280-6495
ispartof Tellus. Series A, Dynamic meteorology and oceanography, 1999-10, Vol.51 (5), p.865-879
issn 0280-6495
1600-0870
language eng
recordid cdi_proquest_miscellaneous_18089644
source Taylor & Francis Open Access
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
Winds and their effects
title A case study of strong winds at an Arctic front
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-10T05%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20case%20study%20of%20strong%20winds%20at%20an%20Arctic%20front&rft.jtitle=Tellus.%20Series%20A,%20Dynamic%20meteorology%20and%20oceanography&rft.au=GR%C3%98NAS,%20SIGBJ%C3%98RN&rft.date=1999-10&rft.volume=51&rft.issue=5&rft.spage=865&rft.epage=879&rft.pages=865-879&rft.issn=0280-6495&rft.eissn=1600-0870&rft.coden=TSAOD8&rft_id=info:doi/10.1034/j.1600-0870.1999.00022.x&rft_dat=%3Cproquest_cross%3E18089644%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3042-4e08ec7ae94f3ed31fe148705ca3613bd6c56a293d9f74cfc4e83d7ddb44eaba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18089644&rft_id=info:pmid/&rfr_iscdi=true